XVL-Organo-Derivatives of Bismuth. Part V. the Stability of Halogen, Cyano-, and Thiocyano- Derivatives of Tertiary Aromatic Bismuthines

Total Page:16

File Type:pdf, Size:1020Kb

XVL-Organo-Derivatives of Bismuth. Part V. the Stability of Halogen, Cyano-, and Thiocyano- Derivatives of Tertiary Aromatic Bismuthines View Article Online / Journal Homepage / Table of Contents for this issue ORGANO-DERIVATIVES OF BISMUTH. PART V. 91 XVL-Organo-derivatives of Bismuth. Part V. The Stability of Halogen, Cyano-, and Thiocyano- derivatives of Tertiary Aromatic Bismuthines. By FREDERICKCHALLENGER and JOHNFREDERICK WILKINSON. THE dihaloids of triphenylbismuthine show diminished stability with increase in the positive character of the halogen until, with iodine, the di-iodide, Ph,BiI,, has not been isolated but immediately decomposes, giving iodobenzene and diphenyliodobismuthine (Challenger and Allpress, T., 1915, 107, 21 ; Gillmeister, Ber., 1897, 30, 2843). As a result of work described in this and in previous communications, the relations existing between the dihaloids and similar derivatives may be summarised thus- 31. p. Temp. of Decomposition. Difluoride ........................ 159" 190-200" Dichloride ........................ 141" 150°, and slowly in boiling benzene. Dibromide ........................ 122" looo, and easily in boiling benzene. Di-iodide, not isolated, unstable, yielding Ph,BiI and PhI. Dicyanide, not isolated, unstable, yielding Ph,Bi.CN and Ph-CN. Dithiocyanate, not isolated, unstable, yielding Ph,Bi. SCN and Ph-SCN. The decomposition of the dihaloids may be represented by the equations- (i) Ph,BiX, = Ph,BiX + PhX or (ii) 2Ph,BiX, = Ph,Bi + PhBiX, + 2PhX and at a higher temperature, Published on 01 January 1922. Downloaded by University of Western Ontario 31/10/2014 11:40:05. (iii) 2Ph,Bi = 3Ph, + 2Bi. When triphenylbismuthine dichloride is treated with potassium fluoride in aqueous-alcoholic solution, triphenylbismuthine dijluoride, m. p. 159", is produced. This decomposes when heated, giving fluorobenzene, triphenylbismuthine ,diphenyl, and probably bismuth fluoride. Although no tetraphenylbismuthonium haloids have so far been obtained, the stability of the difluoride led us to hope that, by interaction with magnesium phenyl bromide, tetraphenyl- bismuthonium fluoride might possibly be formed, but only triphenyl- bismuthine was isolated. The action of potassium hydrogen fluoride on triphenylbismuthine dichloride differs from that of the normal fluoride, triphenylbismuth- ine being obtained. The production of this substance from potass- ium fluoride and diphenylbromobismuthine (p. 101) appears to View Article Online 92 CHALLENGER AND WILKMSON be analogous, and is possibly due to the production of potassium hydroxide by hydrolysis (see p. 94; and Challenger and Goddard, T., 1920, 117, 766). The course of the reaction between diphenylbromobismuthine and silver nitrate depends on the temperature and possibly on the time of interaction. In boiling alcohol, silver bromide, bismuth oxynitrate, and sometimes triphenylbismuthine are produced, whilst reaction in the cold yields the bismuthine, bismuth salts, diphenyl, silver bromide, and metallic silver. Probably the first product is diphenylbismuthine nitrate, Ph,BiNO,, which may react with water, forming benzene and bismuth oxynitrate. It may also be hydrolysed to nitric acid and diphenylhydroxybismuthine, Ph,Bi*OH, which would then yield triphenylbismuthine and bismuth hydroxide (Michaelis and Marquardt, Annalen, 1889, 251, 323). Challenger and Allpress (T., 1921, 119, 916) have shown that triphenylbismuthine and silver nitrate give a yellow, crystalline precipitate, probably having the composition AgN0,,2AgPh, a compound which has been described by Krause and Schmidt (Ber., 1919,52,2150). This compound would probably decompose, giving metallic silver and diphenyl *- AgNO,,ZAgPh = AgNO, + 2Ag + Ph,. This would be analogous to the behaviour of alkyl and aryl plumbanes, which also reduce silver nitrate to the metal, giving organo-silver compounds as intermediate products (Krause and Schmidt, Zoc. cit.). From lead thiocyanate and diphenylbromobismuthinein alcoholic solution, triphenylbismuthine and diphenylthiocyanobisrnuthine, Ph,Bi*SCN, were obtained. The production of triphenylbismuthine Published on 01 January 1922. Downloaded by University of Western Ontario 31/10/2014 11:40:05. is due to decomposition of the diphenylthiocyanobismuthine in alcoholic solution, a reaction which has been observed during the purification of this substance, and which is analogous to the behaviour of diphenylcyanobismuthine (T., 1915, 107, 20)- 3Ph,Bi*SCN = ZPh,Bi + Bi(SCN),. Diphenylcyanobismuthine was also obtained from diphenyl- bromobismuthine and potassium cyanide in aqueous-alcoholic solution. In an attempt to obtain the unknown dicyanide, Ph,Bi(CN),, from the dichloride and alcoholic potassium cyanide, diphenyl- * Mr. A. L. Smith has shown that diphenyIbromobismuthine and silver fluoride in the cold give silver bromide, bismuth fluoride, diphenyl, and metallic silver. View Article Online ORGANO-DERIVATIVES OF BISMUTH. PART V. 93 cyanobismuthine was isolated, which may be explained by the elimination of benzonitrile from the dicyanide. When the dry dichloride and silver cyanide are gently heated, the odour of benzo- nitrile is apparent at 75". It was hoped that the unknown triphenyl- bismuthine dithiocyanate, Ph,Bi(SCN),, might be obtained by treating the dichloride with silver thiocyanate in cold alcohol, but no reaction occurred. When lead thiocyanate and triphenylbismuthine dichloride were heated to about 85", phenyl thiocyanate was produced. From lead thiocyanate and an alcoholic solution of triphenyl- bismut hine dichloride, diphenylt hiocyanobismut hine, phen yl thiocyanate, and polymerised thiocyanogen, (SCN), (Soderback, Annulen, 1919, 419, 317) were isolated. An attempt to obtain triphenylbismuthine dithiocyanate by the addition of free thiocyanogen, (SCN),, prepared according to the method of Soderback (Zoc. cit.), to triphenylbisrnuthine in ethereal solution wits also unsuccessful, the products being bismuth thiocyan- ate (Bender, Ber., 1887, 20, 723), phenyl thiocyanate, and diphenyl- thiocyanobismuthine, which has therefore been prepared by three different methods. This is analogous to the action of thiocyanogen on mercury diphenyl, giving mercury phenyl thiocyanate and phenyl thiocyanate (Soderbiick, Zoc. cit.). The production of the small quantity of bismuth thiocyanate might be caused by further substitution, or decomposition of the diphenylthiocyanobismuthine as above. From these results, it is obvious that triphenylbismuthine dicyanide and dithiocyanate-as well as the di-iodide-are extremely unstable compounds, a property which is shared by the correspond- ing salts of copper. Published on 01 January 1922. Downloaded by University of Western Ontario 31/10/2014 11:40:05. This being the case, it was of interest to determine whether the cyano- or the thiocyano-radicle possesses the greater affinity for bismuth. For this purpose, cyanogen sulphide, (CN),S (Schneider, J. pr. Chem., 1885, [ii], 32, 187), and triphenylbismuthine were shaken with dry ether for eleven hours, yielding bismuth thiocyanate, unchanged triphenylbismuthine, diphenylthiocyanobismuthine, and phenyl thiocyanate. No diphenylcyanobismuthine was isolated. Other experiments confirmed these results, and the reaction is being further investigated. A similar lack of success attended our efforts to prepare the dicyanide and dithiocyanate of tri-cc-naphthylbismuthine. Lead thiocyanate and tri-cc-naphthylbismuthine dichloride in boiling alcohol gave a-naphthyl thiocyanate, and tri-a-naphthylbismuthine. No a-naphthylthiocyanobismuthines were detected, due probably to their instability. View Article Online 04 CHALLENGER AND WILKINSON : The hypothetical dithiocyanate probably breaks down thus :- (C10H7)3Bi(SCN)2= (CloH,),Bi*SCN+ CloH7*SCN. 3(C1,H,),Bi*SCN = 2(CloH7),Bi + Bi(SCN),. a-NaphthyZ thiocyanate does not appear to have been described.* It was also obtained from tri-a-naphthylbismuthine and thiocyano- gen, together with bismuth thiocyanate, thus :- (C1,H7),Bi + 3(SCN), = 3CloH7*SCN+ Bi(SCN),. With potassium cyanide in boiling alcohol, tri-a-naphthylbismuthine dichloride gave the bismuthine. This may be due to the action of alkali, arising from the hydrolysis of potassium cyanide, on di-a- naphthylcyanobismuthine (compare p. 92 ; and Challenger and Allpress, T., 1921, 119, 914). Triphenylbismuthine dichloride was prepared by Michaelis and Marquardt (Zoc. cit.) by the action of chlorine on the bismuthine in chloroform, but no mention is made of the simultaneous produc- tion of a small quantity of diphenylchlorobismuthine, which may be isolated on crystallisation from acetone, in which it is sparingly soluble. This probably explains the low m. p. of the dichloride, when recrystallised from chloroform-light petroleum. The m. p. of the pure dichloride has, however, been shown to depend on the rate of heating, being somewhat higher when rapidly heated, and in the case of large crystals. Potassium cyanate and triphenylbismuthine dichloride, when heated with alcohol, regenerated the free bismuthine, this being probably due to hydrolysis of the potassium cyanate. No reaction occurred in the cold. Kipping and Sands (T.,1921, 119, 842) have shown that with Published on 01 January 1922. Downloaded by University of Western Ontario 31/10/2014 11:40:05. s-tetrachloroethane, certain silico-hydrocarbons give dichloro- additive products. Its action on tertiary bismuthines has been investigated, triphenylbismuthine yielding diphenylchlorobismuth- ine. No dichloride was isolated, even on heating for only a few seconds, although this compound is probably formed in the first instance. No reaction occurred in the case of tri-cr-naphthyl-
Recommended publications
  • Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 1
    Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 1 Doc Number: EDCS-661823 Last Revision Date: 04/30/2021 Policy Owner: Jack Allen Joe Johnson Policy Owner’s Org: Supply Chain Transformation: Sustainability Legal Market Access: Environmental Affairs Next Review Date: Upon changes in applicable global market access requirements Cisco Controlled Substances Specification Revision B6 Cisco Systems, Inc Page 1 of 35 CISCO CONFIDENTIAL All printed copies and duplicate soft copies are considered un-Controlled copies and the original on-line version should be referred for latest version Cisco Controlled Substances Specification Revision B6 EDCS-661823 Page 2 – Table of Contents – Executive Summary .................................................................................................................................... 3 Scope ........................................................................................................................................................... 3 Policy Statement ......................................................................................................................................... 3 1.1. Substances Restricted in Products ........................................................................................................... 3 1.2. Assessment Substances ............................................................................................................................ 7 1.3. Manufacturing Controlled Substances & Consumable Materials ..........................................................
    [Show full text]
  • Hazardous Material Inventory Statement
    City of Brooklyn Park FIRE DEPARTMENT 5200 - 85th Avenue North Brooklyn Park MN 55443 Phone: (763)493-8020 Fax: (763) 493-8391 Hazardous Materials Inventory Statement Users Guide A separate inventory statement shall be provided for each building. An amended inventory statement shall be provided within 30 days of the storage of any hazardous materials or plastics that changes or adds a hazard class or which is sufficient in quantity to cause an increase in the quantity which exceeds 5 percent for any hazard class. The hazardous materials inventory statement shall list by hazard class categories. Each grouping shall provide the following information for each hazardous material listed for that group including a total quantity for each group of hazard class. 1. Hazard class. (See attached Hazardous Materials Categories Listing) 2. Common or trade name. 3. Chemical Abstract Service Number (CAS number) found in 29 Code of Federal Regulations (C.F.R.). 4. Whether the material is pure or a mixture, and whether the material is a solid, liquid or gas 5. Maximum aggregate quantity stored at any one time. 6. Maximum aggregate quantity In-Use (Open to atmosphere) at any one time. 7. Maximum aggregate quantity In-Use (Closed to atmosphere) at any one time. 8. Storage conditions related to the storage type, high-pile, encapsulated, non-encapsulated. Attached is a listing of categories that all materials need to be organized to. Definitions of these categories are also attached for your use. At the end of this packet are blank forms for completing this project. For questions regarding Hazardous Materials Inventory Statement contact the Fire Department at 763-493-8020.
    [Show full text]
  • Search for New Three-, Four-Component Petasis, Passerini
    J. Chem. Chem. Eng. 8 (2014) 428-432 D DAVID PUBLISHING Search for New Three-, Four-Component Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi Reactions with Organic Compounds of Phosphorus, Arsenic, Antimony and Bismuth Aibassov Erkin Zhakenovich*, Yemelyanova Valentina Stepanovna, Shakieva Tatyana Vladimirovna, Tussupbaev Nessipbay Kuandykovich and Blagikh Evgeniy Vladimirovich Research Institute of New Chemical Technologies and Materials, Kazakh National University Al-Farabi, Almaty 005012, Kazakhstan Received: November 29, 2013 / Accepted: December 18, 2013 / Published: April 25, 2014. Abstract: It is discovered a new three-, four-component Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi reactions with of arsine, stibine and bismuthine in organometallic chemistry. Modifications were replaced to a nitrogen atom of classical reactions of atoms of phosphorus, arsenic, antimony and bismuth. It has been proposed a new mechanism for possible reactions. Key words: Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi reactions, phosphorus, arsenic, antimony, bismuth. 1. Introduction four-component reactions Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi reactions with organic In recent years, it has been actively investigated compounds of phosphorus, arsenic, antimony and nucleophilic reaction organilgalogenidami phosphine bismuth. and with electrophilic geterilalkenami allowing to obtain primary, secondary and tertiary phosphines, 2. Theory selectively and with high yield. Most of these It is known that the Petasis reaction is a MCR reactions are realized under mild conditions at a (multi component reaction) that enables the pressure atmlosfernom phosphine. preparation of amines and their derivatives such as Although the chemistry of organophosphorus α-amino acids. compounds devoted a considerable number of monographs, but the reaction of organic compounds of arsenic, antimony and bismuth are very limited.
    [Show full text]
  • 2019 Minnesota Chemicals of High Concern List
    Minnesota Department of Health, Chemicals of High Concern List, 2019 Persistent, Bioaccumulative, Toxic (PBT) or very Persistent, very High Production CAS Bioaccumulative Use Example(s) and/or Volume (HPV) Number Chemical Name Health Endpoint(s) (vPvB) Source(s) Chemical Class Chemical1 Maine (CA Prop 65; IARC; IRIS; NTP Wood and textiles finishes, Cancer, Respiratory 11th ROC); WA Appen1; WA CHCC; disinfection, tissue 50-00-0 Formaldehyde x system, Eye irritant Minnesota HRV; Minnesota RAA preservative Gastrointestinal Minnesota HRL Contaminant 50-00-0 Formaldehyde (in water) system EU Category 1 Endocrine disruptor pesticide 50-29-3 DDT, technical, p,p'DDT Endocrine system Maine (CA Prop 65; IARC; IRIS; NTP PAH (chem-class) 11th ROC; OSPAR Chemicals of Concern; EuC Endocrine Disruptor Cancer, Endocrine Priority List; EPA Final PBT Rule for 50-32-8 Benzo(a)pyrene x x system TRI; EPA Priority PBT); Oregon P3 List; WA Appen1; Minnesota HRV WA Appen1; Minnesota HRL Dyes and diaminophenol mfg, wood preservation, 51-28-5 2,4-Dinitrophenol Eyes pesticide, pharmaceutical Maine (CA Prop 65; IARC; NTP 11th Preparation of amino resins, 51-79-6 Urethane (Ethyl carbamate) Cancer, Development ROC); WA Appen1 solubilizer, chemical intermediate Maine (CA Prop 65; IARC; IRIS; NTP Research; PAH (chem-class) 11th ROC; EPA Final PBT Rule for 53-70-3 Dibenzo(a,h)anthracene Cancer x TRI; WA PBT List; OSPAR Chemicals of Concern); WA Appen1; Oregon P3 List Maine (CA Prop 65; NTP 11th ROC); Research 53-96-3 2-Acetylaminofluorene Cancer WA Appen1 Maine (CA Prop 65; IARC; IRIS; NTP Lubricant, antioxidant, 55-18-5 N-Nitrosodiethylamine Cancer 11th ROC); WA Appen1 plastics stabilizer Maine (CA Prop 65; IRIS; NTP 11th Pesticide (EPA reg.
    [Show full text]
  • PHOTODISSOCIATION DYNAMICS of GROUP V HYDRIDES By
    PHOTODISSOCIATION DYNAMICS OF GROUP V HYDRIDES by William P. Schroeder A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (CHEMISTRY) May 2013 Copyright 2013 William P. Schroeder i This dissertation is dedicated to my favorite lab partner, life partner, and best friend, Christi A. Schroeder. !" ii Table of Contents Abstract 1 Chapter 1 Relativistic Effects in Chemistry 2 1.1 Introduction 2 1.2 Relativistic Effects 3 1.2.1 Qualitative Effects 3 1.2.2 Early Relativistic Quantum Mechanics 8 1.2.3 Dirac Equation 11 1.2.4 Relativistic Many-Body Problem 17 1.3 The Potential Energy Surface (PES) 19 1.4 Photodissociation Dynamics 25 1.5 Chapter 1 References 28 Chapter 2 Experimental Methods 30 2.1 Introduction 30 2.2 Time-of-Flight Spectroscopy 30 2.2.1 Hydrogen Time-of-Flight Spectroscopy 30 2.2.2 High-n Rydberg Time-of-Flight Spectroscopy 31 2.3 Experimental Setup and Details 32 2.3.1 Vacuum Chamber and System 32 2.3.2 Laser Systems 36 2.3.3 Electronic Control and Detection 37 2.3.4 System Alignment 38 2.4 Data Collection and Processing 39 2.5 Chapter 2 References 42 Chapter 3 The UV Photodissociation Dynamics of Arsine (AsH3) 43 3.1 Introduction 43 3.2 Experimental 50 3.3 Results 51 3.4 Discussion 55 3.4.2 AsH2 internal excitations 58 3.4.3 Secondary Photolysis: AsH2 # AsH + H 62 3.5 Conclusions 64 3.6 Chapter 3 References 67 Chapter 4 Supplemental Data, Design Considerations and Safety 70 4.1 Introduction 71 iii
    [Show full text]
  • The Radiochemistry of Bismuth
    NAS-NS-3061 RA OFBISMUTH NUCLEAR SCIENCE SERIES National Academy of Sciences - National Research Council Published by Technical Information Center ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION COMMITTEE ON NUCLEAR SCIENCE John Huizenga, Chairman, Nuclear WrUcture Re=arch Laboratory Thomas A. Tombrello, Vice Chairman, California institute of T=hnology C. K. Reed, Executive Secretary,Netional Academy of Sciences Lowell M. Bollinger, Argonne Nationel Laboratow Peggy Dyer, UnivarsiW of Washington Rusaall Heath, Aerojet Nuclear Co., Inc. Roy K. Middlaton, University of Pennsylvania 1: Lon Morgan, Columbie Scientific Industries G. Davis O’Kelley, Oek Ridge National Laboratow G. C. Phillips, Rice University Henry N. Wagner, Jr., The Johns Hopkins Medial Institutions Joseph Wen~, Brookhaven National Laboratory Sheldon’ Wolff, University of California Chien-Shiung Wu, Columbia Univar?@ Alexander Zuckar, Oak Ridga National Laborato~ Liaison Members William S. Rodney, National science Foundation George L. ROWS, Energy Research and Development Admini-ration SUBCOMMITTEE ON RAD1OCHEMISTRY G. Davis O’Kelley, Chairmsrr, Oak Ridge National Laboratory Glen E. Gordon, UnivwsiW of Maryler& ‘“- ,-. Rolfa H. Hw*r, Rutgers Univemity John A. Miskel, Lawrence Livermore LaboratoW Harold A. O’Brien, Jr., Los Alamos Scientific Laboratory Richard W. Perkins. Bettafle Pacific Northwest Laboratories Andrew F. Stehney, Argonne National Laboratory Kurt Wotfsbarg, Los Alanros Scientific Laboratow LiaisonMembers ~ John L. Burnatte, Energy Research and Davelopmant Administration FTed Findeis, National Scienca Foundation i.,.~.. Radiochemistry of Bismuth Kashinath S. Bhatki Tata Instituteof Fundamental Research Homi Bhabha Road, Bombay 400005 and Bhabha Atomic ResearchC-entre Trornbay,Bombay 400085 (India) Prepared for Subcommittee on Radiochemistry National Academy of Sciences - Natiorial Research Council IssuanceDate:September 1977 Published by Technical 1nform,ation center ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION Price$4.75.Availablefrom: NationalTechnicalInformationservice U.
    [Show full text]
  • Structural Evidence for Pnictogen-Centered Lewis Acidity in Cationic Platinum-Stibine Complexes Featuring Pendent Amino Or Ammonium Groups †
    molecules Article Structural Evidence for Pnictogen-Centered Lewis Acidity in Cationic Platinum-Stibine Complexes Featuring Pendent Amino or Ammonium Groups † Roberta R. Rodrigues and François P. Gabbaï * Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-979-862-2070 † In memory of Alan H. Cowley, a most inspiring Ph.D. advisor, and a great friend. Abstract: As part of our continuing interest in the chemistry of cationic antimony Lewis acids as ligands for late transition metals, we have now investigated the synthesis of platinum complexes featuring a triarylstibine ligand substituted by an o-[(dimethylamino)methyl]phenyl group referred N N to as Ar . More specifically, we describe the synthesis of the amino stibine ligand Ph2SbAr (L) and its platinum dichloride complex [LPtCl]Cl which exists as a chloride salt and which shows weak coordination of the amino group to the antimony center. We also report the conversion of [LPtCl]Cl 3+ into a tricationic complex [LHPt(SMe2)] which has been isolated as a tris-triflate salt after reaction of [LPtCl]Cl with SMe2, HOTf and AgOTf. Finally, we show that [LHPt(SMe2)][OTf]3 acts as a catalyst for the cyclization of 2-allyl-2-(2-propynyl)malonate. Citation: Rodrigues, R.R.; Gabbaï, Keywords: pnictogen bonding; platinum; catalysis F.P. Structural Evidence for Pnictogen-Centered Lewis Acidity in Cationic Platinum-Stibine Complexes Featuring Pendent Amino or 1. Introduction Ammonium Groups . Molecules 2021, The chemistry of stibines is attracted a renewed interest because of applications in 26, 1985.
    [Show full text]
  • Sorted by CAS Number
    This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp Minnesota Department of Health, Chemicals of High Concern list, July 1, 2010 (updated October 7, 2010) Persistent, Bioaccumulative, Toxic or very Persistent, very HPV (2006 and 3 of 4 CAS Number Chemical Name Health endpoint(s) Bioaccumulative Source(s) Use example(s) or class years)1 50-00-0 Formaldehyde (in water) Gastrointestinal system Minnesota HRL Contaminant Maine (CA Prop 65; IARC; IRIS; NTP 11th ROC); WA Appen1; Cancer, Respiratory system, WA CHCC; Minnesota HRV; Wood and textiles finishes, disinfection, 50-00-0 Formaldehyde Eye irritant Minnesota RAA tissue preservative x Maine (CA Prop 65; IARC; IRIS; NTP 11th ROC; OSPAR Chemicals of Concern; EU Endocrine Disruptor; EPA Final PBT Rule for TRI; EPA Priority PBT); Oregon P3 List; WA Appen1; Minnesota 50-32-8 Benzo(a)pyrene Cancer, Endocrine system x HRV Combustion by product, research Dyes and diaminophenol mfg, wood 51-28-5 2,4-Dinitrophenol Eyes WA Appen1; Minnesota HRL preservation, pesticide, pharmaceutical Maine (CA Prop 65; IARC); WA 51-75-2 Nitrogen mustard (Mechlorethamine) Cancer, Development Appen1 Warfare agent, research Maine (CA Prop 65; IARC; NTP Preparation of amino resins, solubilizer, 51-79-6 Urethane (Ethyl carbamate) Cancer, Development 11th ROC); WA Appen1 chemical intermediate Maine (CA Prop 65; IARC; IRIS; NTP 11th ROC; EPA Final PBT Rule for TRI; WA PBT List; OSPAR Chemicals
    [Show full text]
  • Coordination Chemistry of the Main Group Elements with Phosphine, Arsine and Stibine Ligands
    Coordination Chemistry Reviews 260 (2014) 65–115 Contents lists available at ScienceDirect Coordination Chemistry Reviews jo urnal homepage: www.elsevier.com/locate/ccr Review Coordination chemistry of the main group elements with phosphine, arsine and stibine ligands ∗ Jennifer Burt, William Levason , Gillian Reid School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK Contents 1. Introduction . 66 2. Bonding . 66 3. Characterisation techniques . 67 4. s-Block complexes . 68 5. Group 12 . 68 5.1. Zinc . 69 5.2. Cadmium . 70 5.3. Mercury . 71 6. Group 13 . 74 6.1. Boron . 74 6.2. Aluminium. 76 6.3. Gallium . 81 6.4. Indium . 87 6.5. Thallium . 93 7. Group 14 . 94 7.1. Silicon. 94 7.2. Germanium . 94 7.3. Tin . 98 7.4. Lead . 102 8. Group 15 . 102 8.1. Phosphorus . 103 8.2. Arsenic . 103 8.3. Antimony . 104 8.4. Bismuth . 106 9. Group 16 . 108 10. Applications and outlook . ..
    [Show full text]
  • Chemical Inventory Packet / Calarp Lists / HFD / Dmg 2004 Table 1
    HAYWARD FIRE DEPARTMENT CHEMICAL INVENTORY WORKSHEET To prepare a chemical inventory based on the Hayward Fire Code, you are required to report the quantities of chemicals found in the facility, separated by Hazard Category, and by location. You are also to classify the chemicals as to storage and manner of use. Handling and storage requirements are determined by these factors: the nature of the chemical or its hazard; the location; the manner of use or storage; and the quantity involved in each particular manner of use or storage. A Control Area is a building, a portion of the building, or an outside area where chemicals are allowed to be stored, dispensed, used or handled subject to certain conditions and requirements. This packet consists of the following lists and the Chemical Inventory Worksheet form: 1. Hazardous Materials Hazard Categories. This is the list printed on goldenrod paper. Based on the Uniform Fire Code, this is the classification of chemicals by hazard categories. The different hazard categories are defined and examples are provided for each. Most chemicals exhibit more than one hazard, and all hazards should be considered when preparing your chemical inventory. 2. Tables of Regulated Substances Under the CalARP Program. Printed on pink paper, these are the lists of flammable and toxic substances that, if present at or above certain threshold quantities, will require the preparation of a Risk Management Plan 3. Federal List of Extremely Hazardous Substances (EHS). This list is printed on blue paper. These are the substances that the federal government classifies as extremely hazardous substances. The Hayward Fire Department has included “CalARP-Listed or EHS-Listed Chemicals” as a separate Hazard Category.
    [Show full text]
  • GLOSSARY of CLASS NAMES of ORGANIC COMPOUNDS and REACTIVE INTERMEDIATES BASED on STRUCTURE (IUPAC Recommendations 1995)
    Pure &App/. Chem., Vol. 67, Nos 819, pp. 1307-1375, 1995. Printed in Great Britain. (B 1995 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DMSION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (III. 1) COMMISSION ON PHYSICAL ORGANIC CHEMISTRY (III.2) GLOSSARY OF CLASS NAMES OF ORGANIC COMPOUNDS AND REACTIVE INTERMEDIATES BASED ON STRUCTURE (IUPAC Recommendations 1995) Prepared for publication by G.P. MOSS, P.A.S. SMITH and D. TAVERNIER Cornpodtion of the ZZZ.1 & 111.2 Working Party (1980-1994): H.J.T. Bos, A.J. Boulton, E.W. Godly, P. Griinanger, A.D. McNaught, G.P. Moss, R. PanicO, J. Rigaudy, P.A.S. Smith (Conwnorfiom ZZZ, I), J.H. Stocker, D. Tavernier, R.A.Y. Jones, J. March, J.M. McBnde, P. Miiller (Conwnorfim 111.2). Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document (1980-1994) was as follows: Titular Members: 0. Achmatowicz (Poland) 1979-1987; H. J. T. Bos (Netherlands) 1987- , Vice-Chairman, 1991- ; J. R. Bull (Republic of South Africa) 1987-1993; H. A. Favre (Canada) 1989- , Chairman, 1991- ; P. M. Giles, Jr. (USA) 1989- ; E. W. Godly (UK) 1987-1993. Secretary, 1989-1993 ; D. Hellwinkel (Federal Republic of Germany) 1979-1987, Vice- Chairman, 1981-1987; B. J. Herold (Portugal) 1994- ; K. Hirayama (Japan) 1975-1983; M. V. KisakUrck (Switizrland) 1994- ; A. D. McNaught (UK) 1979-1987; G. P. Moss (UK) 1977- 1987, Chairinan, 1981- 1987, Vice-Chainnun, 1979-1981; R. Panico (Francc) 1981-1991, Vice- Chairman, 1989-1991; W. H. Powell (USA) Secretary, 1979-1989; J.
    [Show full text]
  • List of Chemicals Reported for the 2012 Chemical Data Reporting (CDR) in Alphabetical Order
    List of Chemicals Reported for the 2012 Chemical Data Reporting (CDR) in Alphabetical Order For the 2012 CDR, 7,674 unique chemicals were reported by manufacturers (including importers). Chemicals are listed in alphabetical order by CA Index Name (for non-confidential chemicals) or by generic chemical name (for chemicals listed on the confidential portion of the TSCA Inventory). CASRN or CASRN or ACCESSION ACCESSION CA INDEX NAME or GENERIC NAME NUMBER CA INDEX NAME or GENERIC NAME NUMBER (Benzoquinolinyl)-(alkylimidazolyl)indenedione 1(3H)-Isobenzofuranone, 6-(dimethylamino)-3,3- deriv., compd. with alkanoic acid 56907 bis[4-( dimethylamino)phenyl]- 1552427 (Substituted-5-sulfophenyl heteromonocycle) azo- 1,10-Decanediamine 646253 (substituted 2-hydroxyphenyl), iron complex, 1,10-Phenanthroline 66717 sodium salt 20736 1,12-Dodecanediol 5675514 .alpha.-D-Glucopyranoside, .beta.-D-fructofuranosyl 57501 1,1'-Bicyclohexyl 92513 .alpha.-D-Glucopyranoside, .beta.-D-fructofuranosyl 1,1'-Biphenyl 92524 O-.alpha.-D-galactopyranosyl-( 1.fwdarw.6)- 512696 1,1'-Biphenyl, 4,4'-diisocyanato-3,3'-dimethyl- 91974 .alpha.-D-Glucopyranoside, .beta.-D-fructofuranosyl 1,1-Cyclopropanedicarboxylic acid, 1,1-dimethyl O-.alpha.-D-galactopyranosyl-( 1.fwdarw.6)-O- ester 6914712 .alpha.-D-g alactopyranosyl-(1.fwdarw.6)- 470553 1,2,3,4-Butanetetracarboxylic acid, 1,2,3,4- .alpha.-D-Glucopyranoside, .beta.-D- tetrakis(1,2,2,6,6-pentamethyl-4 -piperidinyl) ester 91788839 fructofuranosyl, benzoate 12738646 1,2,3,4-Butanetetracarboxylic acid, 1,2,3,4- .alpha.-D-Glucopyranoside,
    [Show full text]