Structural Evidence for Pnictogen-Centered Lewis Acidity in Cationic Platinum-Stibine Complexes Featuring Pendent Amino Or Ammonium Groups †
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structur
Approved Minutes, Busan 2015 Risto Laitinen/August 4, 2016 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Approved Minutes of Division Committee Meeting in Busan, Korea, 8–9 August, 2015 1. Welcome, introductory remarks and housekeeping announcements Karl-Heinz Hellwich (KHH) welcomed everybody to the meeting, extending a special welcome to those who were attending the Division Committee meeting for the first time. He described house rules and arrangements during the meeting. KHH also regretfully reported that it has come to his attention that since the Bangor meeting in August 2014, Prof. Derek Horton (Member, Division VIII task groups on Carbohydrate and Flavonoids nomenclature; Associate Member, IUBMB-IUPAC Joint Commission on Biochemical Nomenclature) and Dr. Libuse Goebels, Member of the former Commission on Nomenclature of Organic Chemistry) have passed away. The meeting attendees paid a tribute to their memory by a moment of silence. 2. Attendance and apologies Present: Karl-Heinz Hellwich (president, KHH) , Risto Laitinen (acting secretary, RSL), Richard Hartshorn (past-president, RMH), Michael Beckett (MAB), Alan Hutton (ATH), Gerry P. Moss (GPM), Michelle Rogers (MMR), Jiří Vohlídal (JV), Andrey Yerin (AY) Observers: Leah McEwen (part time, chair of proposed project, LME), Elisabeth Mansfield (task group chair, EM), Johan Scheers (young observer, day 1; JS), Prof. Kazuyuki Tatsumi (past- president of the union, part of day 2) Apologies: Ture Damhus (secretary, TD), Vefa Ahsen, Kirill Degtyarenko, Gernot Eller, Mohammed Abul Hashem, Phil Hodge (PH), Todd Lowary, József Nagy, Ebbe Nordlander (EN), Amélia Pilar Rauter (APR), Hinnerk Rey (HR), John Todd, Lidija Varga-Defterdarović. -
Which Pnictogen Is Best?† Cite This: New J
NJC PAPER Pnictogen bonding with alkoxide cages: which pnictogen is best?† Cite this: New J. Chem., 2019, 43,14305 Henry J. Trubenstein, ‡ Shiva Moaven, ‡ Maythe Vega, Daniel K. Unruh and Anthony F. Cozzolino * Pnictogen bonding is beginning to emerge as a useful supramolecular interaction. The design strategies for these systems are still in the early stages of development and much attention has been focused on the lighter pnictogens. Pnictogen bond donors can have up to three independent sites for binding which can result in triple pnictogen bonding. This has been observed in the self-assembly of antimony alkoxide cages, but not with the lighter congeners. This work reports structural characterization of an analogous arsenic alkoxide cage that engages in a single pnictogen bond and synthetic explorations of Received 14th July 2019, the bismuth congener. DFT calculations are used to evaluate the differences between the structures. Accepted 13th August 2019 Ultimately the partial charge on the pnictogen and the energy of the pnictogen lone pair dictate the DOI: 10.1039/c9nj03648b strength, orientation and number of pnictogen bonds that these cages form. Antimony cages strike the best balance between strength and directionality, allowing them to achieve triple pnictogen bonding rsc.li/njc where the other congeners do not. Introduction or bismuth.15–23 Recently, antimony centred PnBs have been purposefully designed into molecules to actively direct the self- A pnictogen bond (PnB), in analogy to a halogen or chalcogen assembly of reversed bilayer vesicles,24 enable anion binding bond (XB/HaB or ChB), is ‘‘the net attractive interaction between with applications in sensing and transport,25–28 self-assembly an electrophilic region associated with a [pnictogen] atom in a complex architectures through triple pnictogen bonding29 and molecular entity [the PnB donor] and a nucleophilic region in allow for supramolecular catalysis.30 These applications rely on another, or the same, molecular entity [the PnB acceptor].’’1 the predictable formation of PnBs. -
Of the Periodic Table
of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use. -
Hazardous Material Inventory Statement
City of Brooklyn Park FIRE DEPARTMENT 5200 - 85th Avenue North Brooklyn Park MN 55443 Phone: (763)493-8020 Fax: (763) 493-8391 Hazardous Materials Inventory Statement Users Guide A separate inventory statement shall be provided for each building. An amended inventory statement shall be provided within 30 days of the storage of any hazardous materials or plastics that changes or adds a hazard class or which is sufficient in quantity to cause an increase in the quantity which exceeds 5 percent for any hazard class. The hazardous materials inventory statement shall list by hazard class categories. Each grouping shall provide the following information for each hazardous material listed for that group including a total quantity for each group of hazard class. 1. Hazard class. (See attached Hazardous Materials Categories Listing) 2. Common or trade name. 3. Chemical Abstract Service Number (CAS number) found in 29 Code of Federal Regulations (C.F.R.). 4. Whether the material is pure or a mixture, and whether the material is a solid, liquid or gas 5. Maximum aggregate quantity stored at any one time. 6. Maximum aggregate quantity In-Use (Open to atmosphere) at any one time. 7. Maximum aggregate quantity In-Use (Closed to atmosphere) at any one time. 8. Storage conditions related to the storage type, high-pile, encapsulated, non-encapsulated. Attached is a listing of categories that all materials need to be organized to. Definitions of these categories are also attached for your use. At the end of this packet are blank forms for completing this project. For questions regarding Hazardous Materials Inventory Statement contact the Fire Department at 763-493-8020. -
Search for New Three-, Four-Component Petasis, Passerini
J. Chem. Chem. Eng. 8 (2014) 428-432 D DAVID PUBLISHING Search for New Three-, Four-Component Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi Reactions with Organic Compounds of Phosphorus, Arsenic, Antimony and Bismuth Aibassov Erkin Zhakenovich*, Yemelyanova Valentina Stepanovna, Shakieva Tatyana Vladimirovna, Tussupbaev Nessipbay Kuandykovich and Blagikh Evgeniy Vladimirovich Research Institute of New Chemical Technologies and Materials, Kazakh National University Al-Farabi, Almaty 005012, Kazakhstan Received: November 29, 2013 / Accepted: December 18, 2013 / Published: April 25, 2014. Abstract: It is discovered a new three-, four-component Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi reactions with of arsine, stibine and bismuthine in organometallic chemistry. Modifications were replaced to a nitrogen atom of classical reactions of atoms of phosphorus, arsenic, antimony and bismuth. It has been proposed a new mechanism for possible reactions. Key words: Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi reactions, phosphorus, arsenic, antimony, bismuth. 1. Introduction four-component reactions Petasis, Passerini, Hantzsch, Kabachnic-Fields, Ugi reactions with organic In recent years, it has been actively investigated compounds of phosphorus, arsenic, antimony and nucleophilic reaction organilgalogenidami phosphine bismuth. and with electrophilic geterilalkenami allowing to obtain primary, secondary and tertiary phosphines, 2. Theory selectively and with high yield. Most of these It is known that the Petasis reaction is a MCR reactions are realized under mild conditions at a (multi component reaction) that enables the pressure atmlosfernom phosphine. preparation of amines and their derivatives such as Although the chemistry of organophosphorus α-amino acids. compounds devoted a considerable number of monographs, but the reaction of organic compounds of arsenic, antimony and bismuth are very limited. -
2019 Minnesota Chemicals of High Concern List
Minnesota Department of Health, Chemicals of High Concern List, 2019 Persistent, Bioaccumulative, Toxic (PBT) or very Persistent, very High Production CAS Bioaccumulative Use Example(s) and/or Volume (HPV) Number Chemical Name Health Endpoint(s) (vPvB) Source(s) Chemical Class Chemical1 Maine (CA Prop 65; IARC; IRIS; NTP Wood and textiles finishes, Cancer, Respiratory 11th ROC); WA Appen1; WA CHCC; disinfection, tissue 50-00-0 Formaldehyde x system, Eye irritant Minnesota HRV; Minnesota RAA preservative Gastrointestinal Minnesota HRL Contaminant 50-00-0 Formaldehyde (in water) system EU Category 1 Endocrine disruptor pesticide 50-29-3 DDT, technical, p,p'DDT Endocrine system Maine (CA Prop 65; IARC; IRIS; NTP PAH (chem-class) 11th ROC; OSPAR Chemicals of Concern; EuC Endocrine Disruptor Cancer, Endocrine Priority List; EPA Final PBT Rule for 50-32-8 Benzo(a)pyrene x x system TRI; EPA Priority PBT); Oregon P3 List; WA Appen1; Minnesota HRV WA Appen1; Minnesota HRL Dyes and diaminophenol mfg, wood preservation, 51-28-5 2,4-Dinitrophenol Eyes pesticide, pharmaceutical Maine (CA Prop 65; IARC; NTP 11th Preparation of amino resins, 51-79-6 Urethane (Ethyl carbamate) Cancer, Development ROC); WA Appen1 solubilizer, chemical intermediate Maine (CA Prop 65; IARC; IRIS; NTP Research; PAH (chem-class) 11th ROC; EPA Final PBT Rule for 53-70-3 Dibenzo(a,h)anthracene Cancer x TRI; WA PBT List; OSPAR Chemicals of Concern); WA Appen1; Oregon P3 List Maine (CA Prop 65; NTP 11th ROC); Research 53-96-3 2-Acetylaminofluorene Cancer WA Appen1 Maine (CA Prop 65; IARC; IRIS; NTP Lubricant, antioxidant, 55-18-5 N-Nitrosodiethylamine Cancer 11th ROC); WA Appen1 plastics stabilizer Maine (CA Prop 65; IRIS; NTP 11th Pesticide (EPA reg. -
Techniques of Preparation and Crystal Chemistry of Transuranic Chalcogenides and Pnictides D
Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides D. Damien, R. Haire, J. Peterson To cite this version: D. Damien, R. Haire, J. Peterson. Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides. Journal de Physique Colloques, 1979, 40 (C4), pp.C4-95-C4-100. 10.1051/jphyscol:1979430. jpa-00218826 HAL Id: jpa-00218826 https://hal.archives-ouvertes.fr/jpa-00218826 Submitted on 1 Jan 1979 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, supplément au n° 4, Tome 40, avril 1979, page C4-95 Techniques of preparation and crystal chemistry of transuranic chalcogenides and pnictides (*) D. A. Damien (**), R. G. Haire and J. R. Peterson (t) Transuranium Research Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37830, U.S.A. Résumé. — La cristallochimie d'un certain nombre de chalcogénures et pnictures d'éléments transuraniens a été étudiée en utilisant les isotopes Am, Cm, Bk et Cf. Les composés ont été préparés par réaction directe du métal avec l'élément chalcogène ou pnictogène à température élevée. Les chalcogénures supérieurs ont été dissociés thermiquement pour donner des composés à stœchiométrie plus basse dont les sesquichalco- génures constituent la limite. -
PHOTODISSOCIATION DYNAMICS of GROUP V HYDRIDES By
PHOTODISSOCIATION DYNAMICS OF GROUP V HYDRIDES by William P. Schroeder A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (CHEMISTRY) May 2013 Copyright 2013 William P. Schroeder i This dissertation is dedicated to my favorite lab partner, life partner, and best friend, Christi A. Schroeder. !" ii Table of Contents Abstract 1 Chapter 1 Relativistic Effects in Chemistry 2 1.1 Introduction 2 1.2 Relativistic Effects 3 1.2.1 Qualitative Effects 3 1.2.2 Early Relativistic Quantum Mechanics 8 1.2.3 Dirac Equation 11 1.2.4 Relativistic Many-Body Problem 17 1.3 The Potential Energy Surface (PES) 19 1.4 Photodissociation Dynamics 25 1.5 Chapter 1 References 28 Chapter 2 Experimental Methods 30 2.1 Introduction 30 2.2 Time-of-Flight Spectroscopy 30 2.2.1 Hydrogen Time-of-Flight Spectroscopy 30 2.2.2 High-n Rydberg Time-of-Flight Spectroscopy 31 2.3 Experimental Setup and Details 32 2.3.1 Vacuum Chamber and System 32 2.3.2 Laser Systems 36 2.3.3 Electronic Control and Detection 37 2.3.4 System Alignment 38 2.4 Data Collection and Processing 39 2.5 Chapter 2 References 42 Chapter 3 The UV Photodissociation Dynamics of Arsine (AsH3) 43 3.1 Introduction 43 3.2 Experimental 50 3.3 Results 51 3.4 Discussion 55 3.4.2 AsH2 internal excitations 58 3.4.3 Secondary Photolysis: AsH2 # AsH + H 62 3.5 Conclusions 64 3.6 Chapter 3 References 67 Chapter 4 Supplemental Data, Design Considerations and Safety 70 4.1 Introduction 71 iii -
Toward a List of Molecules As Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry
Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Seager, S.; Bains, W. and Petkowski, J.J. “Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.” Astrobiology 16, no. 6 (June 2016): 465–485 ©2016 Mary Ann Liebert, Inc As Published http://dx.doi.org/10.1089/ast.2015.1404 Publisher Mary Ann Liebert, Inc. Version Final published version Citable link http://hdl.handle.net/1721.1/109943 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. ASTROBIOLOGY Volume 16, Number 6, 2016 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2015.1404 Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry S. Seager,1,2 W. Bains,1,3 and J.J. Petkowski1 Abstract Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth’s atmospheric spectrum (O2,CH4,N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl). -
Organometallic Pnictogen Chemistry
Institut für Anorganische Chemie 2014 Fakultät für Chemie und Pharmazie | Sabine Reisinger aus Regensburg, geb. Scheuermayer am 15.07.1983 Studium: Chemie, Universität Regensburg Abschluss: Diplom Promotion: Prof. Dr. Manfred Scheer, Institut für Anorganische Chemie Sabine Reisinger Die vorliegende Arbeit enthält drei Kapitel zu unterschiedlichen Aspekten der metallorganischen Phosphor- und Arsen-Chemie. Zunächst werden Beiträge zur supramolekularen Chemie mit 5 Pn-Ligandkomplexen basierend auf [Cp*Fe(η -P5)] und 5 i [Cp*Fe(η - Pr3C3P2)] gezeigt, gefolgt von der Eisen-vermittelten Organometallic Pnictogen Aktivierung von P4, die zu einer selektiven C–P-Bindungsknüpfung führt, während das dritte Kapitel die Verwendung von Phosphor Chemistry – Three Aspects und Arsen als Donoratome in mehrkernigen Komplexen mit paramagnetischen Metallionen behandelt. Sabine Reisinger 2014 Alumniverein Chemie der Universität Regensburg E.V. [email protected] http://www.alumnichemie-uniregensburg.de Aspects Three – Chemistry Pnictogen Organometallic Fakultät für Chemie und Pharmazie ISBN 978-3-86845-118-4 Universität Regensburg Universitätsstraße 31 93053 Regensburg www.uni-regensburg.de 9 783868 451184 4 Sabine Reisinger Organometallic Pnictogen Chemistry – Three Aspects Organometallic Pnictogen Chemistry – Three Aspects Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Sabine Reisinger, geb. Scheuermayer Regensburg 2014 Die Arbeit wurde von Prof. Dr. Manfred Scheer angeleitet. Das Promotionsgesuch wurde am 20.06.2014 eingereicht. Das Kolloquium fand am 11.07.2014 statt. Prüfungsausschuss: Vorsitzender: Prof. Dr. Helmut Motschmann 1. Gutachter: Prof. Dr. Manfred Scheer 2. Gutachter: Prof. Dr. Henri Brunner weiterer Prüfer: Prof. Dr. Bernhard Dick Dissertationsreihe der Fakultät für Chemie und Pharmazie der Universität Regensburg, Band 4 Herausgegeben vom Alumniverein Chemie der Universität Regensburg e.V. -
HIGH HAZARD GAS Review Date: 09/23/2019
University of Pittsburgh EH&S Guideline Number: 04-021 Safety Manual Subject: Effective Date: 04/19/2017 Page 1 of 9 HIGH HAZARD GAS Review Date: 09/23/2019 STORAGE AND USE OF HIGH HAZARD GAS 1. Definition of High Hazard (HH) Gases For these guidelines, any gas meeting one or more of the following definitions based on International Fire Code (IFC) and National Fire Protection Association (NFPA) standards: 1.1. Flammable gas – a material that is a gas at 68ºF (20ºC) or less at an absolute pressure of 14.7 psi (101.325 kPa) when in a mixture of 13% or less by volume with air, or that has a flammable range at an absolute pressure of 14.7 psi (101.325 kPa) with air of at least 12%, regardless of the lower limit 1.2. Pyrophoric gas – a gas with an autoignition temperature in air at or below 130ºF (54.4ºC) 1.3. Health Hazard 3 (HH3) gas – material that, under emergency conditions and according to the standards, can cause serious or permanent injury 1.4. Health Hazard 4 (HH4) gas – material that, under emergency conditions and according to the standards, can be lethal The storage and usage of a gas or gases meeting any of the above definitions must follow all applicable IFC and NFPA guidelines and the requirements outlined in this document. Consult EH&S for specific guidance on gas mixtures containing corrosive, flammable or poisonous gas components (ex. 1% carbon monoxide/nitrogen, 5% hydrogen sulfide/helium). 2. Notification Requirements Prior to Obtaining High Hazard Gases 2.1. -
Chemical Terrorism Fact Sheet
Chemical Terrorism Fact Sheet Blood Agents - Arsines Arsine has a mild garlic odor. Photo courtesy of the Garlic Information Center, UK (Arsenic Hydride, AsH3) Protective Equipment/Detection Chemical Overview A positive-pressure, self-contained breathing apparatus (SCBA) or supplied-air First identified in 1775, arsine is a respirator with a full-facepiece, or an air-purifying, full-facepiece respirator (gas highly poisonous, colorless, nonirritat- mask) with a chin-style, front- or back-mounted canister, is recommended for ing, flammable gas with a mild garlic odor at concentrations of 0.5 ppm and protection. Chemical-protective clothing is not required because arsine gas is not above (a level 10-fold greater than absorbed through the skin and does not cause skin irritation. OSHA permissible levels). Two and one half times heavier than air, it will settle to low-lying areas. It is soluble Decontamination in water, and slightly soluble in alcohol and alkalis. Victims exposed only to arsine gas do not need decontamination, but should be re- moved immediately from the contaminated environment. Arsine results when nascent hydrogen is generated in the presence of arsenic, or when water reacts with a metallic arse- nide. Fungi in the presence of arsenic Signs and Symptoms (especially in sewage) can also produce arsine. Stibine (SbH ), a toxic gas that Arsine is the most acutely toxic form of arsenic and preferentially binds to hemoglo- 3 is formed when antimony is exposed to bin. Inhibition of catalase may lead to the accumulation of hydrogen peroxide, which, nascent hydrogen, equals or surpasses as an oxidizer, destroys red cell membranes and aids the arsine-induced conversion of arsine in toxicity and causes a specific +2 +3 Fe to Fe , which further impairs oxygen transport.