Order APODIFORMES: Swifts, Hummingbirds and Owlet-Nightjars the Monophyly of the Caprimulgiformes Has Long Been Questioned, As Reviewed by Mayr (2002)

Total Page:16

File Type:pdf, Size:1020Kb

Order APODIFORMES: Swifts, Hummingbirds and Owlet-Nightjars the Monophyly of the Caprimulgiformes Has Long Been Questioned, As Reviewed by Mayr (2002) Text extracted from Gill B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; Scofield, R.P.; Tennyson, A.J.D.; Worthy, T.H. 2010. Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington, Te Papa Press and Ornithological Society of New Zealand. Pages 269-270. Order APODIFORMES: Swifts, Hummingbirds and Owlet-nightjars The monophyly of the Caprimulgiformes has long been questioned, as reviewed by Mayr (2002). That Aegotheles does not belong in this order was clearly stated in a generally overlooked study of cranial morphology (Simonetta 1967), in which Aegotheles was found to be more closely related to basal or primitive apodids than to caprimulgids. The differences were so profound that Simonetta erected Aegothelae for the genus (Simonetta 1967: 31). Sibley et al. (1988) also placed Aegotheles at subordinal level, based on DNA evidence, calling the group Aegotheli, apparently unaware of Simonetta’s name (1967). Recent osteological and genetic studies (e.g. Mayr 2002, 2005; Mayr et al. 2003; Barrowclough et al. 2006) provide overwhelming evidence that the Caprimulgiformes (sensu del Hoyo et al. 1999) is paraphyletic, and that Aegothelidae forms a clade with Apodiformes—Hemiprocnidae and Apodidae (swifts) and Trochilidae (hummingbirds)—outside the other members of Caprimulgiformes. Many additional studies (reviewed by Sangster 2005) have supported this relationship. Sangster (2005) gave the non-Linnaean name Daedalornithes for the clade of Apodiformes and Aegotheles, however the relationship can be as easily accommodated by transferring Aegothelae to the Apodiformes (Barrowclough et al. 2006), which suggestion we follow here. Suborder AEGOTHELAE: Owlet-nightjars Family AEGOTHELIDAE Bonaparte: Owlet-nightjars Aegothelinae Bonaparte, 1853: Compt. Rend. Séa. Acad. Sci., Paris 37(18): 645 – Type genus Aegotheles Vigors & Horsfield, 1827. Genus Aegotheles Vigors & Horsfield Aegotheles Vigors & Horsfield, 1826: Trans. Linn. Soc. London 15(1): 194 – Type species (by monotypy) Caprimulgus novaehollandiae Latham = Aegotheles cristatus (White). Euaegotheles Mathews, 1918: Birds Australia 7: 52 – Type species (by original designation) Batrachostomus psilopterus Gray = Aegotheles crinifrons (Bonaparte). Megaegotheles Scarlett, 1968: Notornis 15: 254 – Type species (by monotypy) Megaegotheles novaezealandiae Scarlett = Aegotheles novaezealandiae (Scarlett). Potts (1871, 1873) described a small bird from locations in both Canterbury and Westland that he considered was either a small owl or a member of Podargidae. It was poorly described and no specimen was kept, but it was described as the size of a kingfisher and of very gentle nature. It is possible that this bird was Aegotheles novaezealandiae, not otherwise recorded alive. The use of the name Strix parvissima by Ellman indicates that this bird was known several years before Potts (1871), making the name available. However, in the absence of an adequate description these records are unidentifiable, and the following names are nomina dubia: Strix parvissima Ellman, 1861: Zoologist 19: 7465. Nomen dubium. Strix parvissima Potts, 1871: Trans. N.Z. Inst. 2: 68 – Rangitata River, Canterbury. Nomen dubium. Athene (Strix) parvissima Potts; Potts 1873, Trans. N.Z. Inst. 5: 172. Nomen dubium. † Aegotheles novaezealandiae (Scarlett) New Zealand Owlet-nightjar Megaegotheles novaezealandiae Scarlett, 1968: Notornis 15: 254 – Canaan, Takaka, Nelson. Aegotheles novaezealandiae (Scarlett); Olson, Balouet & Fisher 1987, Gerfaut 77: 349. Aegotheles novaezelandiae (Scarlett); Tennyson & Martinson 2006, Extinct Birds of New Zealand: 104. Unjustified emendation. Extinct. Widespread at Late Pleistocene and Holocene fossil sites (particularly caves) in the North and South Islands. Rarely recorded from middens. Larger than Aegotheles of Australia and probably flightless or nearly so (Rich & Scarlett 1977). Olson et al. (1987) synonymised Megaegotheles with Aegotheles. The phylogeny of Aegothelidae was recently assessed, based on mtDNA sequences, and A. novaezealandiae shown to be the sister taxon of A. savesi from New Caledonia. Together they are basal in the genus (Dumbacher et al. 2003). .
Recommended publications
  • Rivoli's Hummingbird: Eugenes Fulgens Donald R
    Digital Commons @ George Fox University Faculty Publications - Department of Biology and Department of Biology and Chemistry Chemistry 6-27-2018 Rivoli's Hummingbird: Eugenes fulgens Donald R. Powers George Fox University, [email protected] Follow this and additional works at: https://digitalcommons.georgefox.edu/bio_fac Part of the Biodiversity Commons, Biology Commons, and the Poultry or Avian Science Commons Recommended Citation Powers, Donald R., "Rivoli's Hummingbird: Eugenes fulgens" (2018). Faculty Publications - Department of Biology and Chemistry. 123. https://digitalcommons.georgefox.edu/bio_fac/123 This Article is brought to you for free and open access by the Department of Biology and Chemistry at Digital Commons @ George Fox University. It has been accepted for inclusion in Faculty Publications - Department of Biology and Chemistry by an authorized administrator of Digital Commons @ George Fox University. For more information, please contact [email protected]. Rivoli's Hummingbird Eugenes fulgens Order: CAPRIMULGIFORMES Family: TROCHILIDAE Version: 2.1 — Published June 27, 2018 Donald R. Powers Introduction Rivoli's Hummingbird was named in honor of the Duke of Rivoli when the species was described by René Lesson in 1829 (1). Even when it became known that William Swainson had written an earlier description of this species in 1827, the common name Rivoli's Hummingbird remained until the early 1980s, when it was changed to Magnificent Hummingbird. In 2017, however, the name was restored to Rivoli's Hummingbird when the American Ornithological Society officially recognized Eugenes fulgens as a distinct species from E. spectabilis, the Talamanca Hummingbird, of the highlands of Costa Rica and western Panama (2). See Systematics: Related Species.
    [Show full text]
  • Why So Many Kinds of Passerine Birds?
    Letters • Why so many kinds of passerine birds? Raikow and Bledsoe (2000), in em- Slud 1976). It is unreasonable to assume the list of possible reasons for passerine bracing the null model of Slowinski that there is no underlying biological rea- success, but I would place more empha- and Guyer (1989a, 1989b), may perhaps son for this pattern and for the major sis on it than he did. be said literally to have added nothing turnover in avifaunas in the Northern It is difficult to discuss the nest-bufld- to the Kst of suggestions for why there are Hemisphere in favor of passerines after ing capabilities of passerines without re- so many species of passerine birds. When the Oligocène. sorting to anthropomorphisms such as Raikow (1986) addressed this problem Reproductive adaptations presumably "clever" or "ingenious." Is it not mar- previously and could find no key mor- made the holometabolous insects velous, however, that a highly special- phological adaptations to explain the di- (Coleóptera, Díptera, Hymenoptera, ized aerial feeder such as a cliff swallow versity of Passeriformes, the so-called Lepidoptera, and so on) the dominant (Hirundo pyrrhonota), with tiny, weak songbirds or perching birds, he despaired clade of organisms on earth. Likewise, it bill and feet, can fashion a complex nest and suggested that the problem may be appears that reproductive adaptations, out of gobs of mud fastened to a flat, only "an accident of classificatory his- not morphology, are responsible for the vertical surface? What adjective suffices tory," which brought on a storm of protest dominance of passerine birds over other to describe the nest of tailorbirds {Systematic Zoology 37: 68-76; 41: 242- orders of birds.
    [Show full text]
  • Brown2009chap67.Pdf
    Swifts, treeswifts, and hummingbirds (Apodiformes) Joseph W. Browna,* and David P. Mindella,b Hirundinidae, Order Passeriformes), and between the aDepartment of Ecology and Evolutionary Biology & University nectivorous hummingbirds and sunbirds (Family Nec- of Michigan Museum of Zoology, 1109 Geddes Road, University tariniidae, Order Passeriformes), the monophyletic sta- b of Michigan, Ann Arbor, MI 48109-1079, USA; Current address: tus of Apodiformes has been well supported in all of the California Academy of Sciences, 55 Concourse Drive Golden Gate major avian classiA cations since before Fürbringer (3). Park, San Francisco, CA 94118, USA *To whom correspondence should be addressed (josephwb@ A comprehensive historical review of taxonomic treat- umich.edu) ments is available (4). Recent morphological (5, 6), genetic (4, 7–12), and combined (13, 14) studies have supported the apodiform clade. Although a classiA cation based on Abstract large DNA–DNA hybridization distances (4) promoted hummingbirds and swiJ s to the rank of closely related Swifts, treeswifts, and hummingbirds constitute the Order orders (“Trochiliformes” and “Apodiformes,” respect- Apodiformes (~451 species) in the avian Superorder ively), the proposed revision does not inP uence evolu- Neoaves. The monophyletic status of this traditional avian tionary interpretations. order has been unequivocally established from genetic, One of the most robustly supported novel A ndings morphological, and combined analyses. The apodiform in recent systematic ornithology is a close relation- timetree shows that living apodiforms originated in the late ship between the nocturnal owlet-nightjars (Family Cretaceous, ~72 million years ago (Ma) with the divergence Aegothelidae, Order Caprimulgiformes) and the trad- of hummingbird and swift lineages, followed much later by itional Apodiformes.
    [Show full text]
  • Similarities in Body Size Distributions of Small-Bodied Flying Vertebrates
    Evolutionary Ecology Research, 2004, 6: 783–797 Similarities in body size distributions of small-bodied flying vertebrates Brian A. Maurer,* James H. Brown, Tamar Dayan, Brian J. Enquist, S.K. Morgan Ernest, Elizabeth A. Hadly, John P. Haskell, David Jablonski, Kate E. Jones, Dawn M. Kaufman, S. Kathleen Lyons, Karl J. Niklas, Warren P. Porter, Kaustuv Roy, Felisa A. Smith, Bruce Tiffney and Michael R. Willig National Center for Ecological Analysis and Synthesis (NCEAS), Working Group on Body Size in Ecology and Paleoecology, 735 State Street, Suite 300, Santa Barbara, CA 93101-5504, USA ABSTRACT Since flight imposes physical constraints on the attributes of a flying organism, it is expected that the distribution of body sizes within clades of small-bodied flying vertebrates should share a similar pattern that reflects these constraints. We examined patterns in similarities of body mass distributions among five clades of small-bodied endothermic vertebrates (Passeriformes, Apodiformes + Trochiliformes, Chiroptera, Insectivora, Rodentia) to examine the extent to which these distributions are congruent among the clades that fly as opposed to those that do not fly. The body mass distributions of three clades of small-bodied flying vertebrates show significant divergence from the distributions of their sister clades. We examined two alternative hypotheses for similarities among the size frequency distributions of the five clades. The hypothesis of functional symmetry corresponds to patterns of similarity expected if body mass distributions of flying clades are constrained by similar or identical functional limitations. The hypothesis of phylogenetic symmetry corresponds to patterns of similarity expected if body mass distributions reflect phylogenetic relationships among clades.
    [Show full text]
  • 1 Husbandry Guidelines Apodiformes Hummingbirds-Trochilidae Karen
    Husbandry Guidelines Apodiformes Hummingbirds-Trochilidae Karen Krebbs, Conservation Biologist / Arizona-Sonora Desert Museum / Tucson, AZ Dave Rimlinger, Curator of Ornithology / San Diego Zoo / San Diego, CA Michael Mace, Curator of Ornithology / San Diego Wild Animal Park / Escondido, CA September, 2002 1. ACQUISITION AND ACCLIMATIZATION Sources of birds & acclimatization procedures - In the United States local species of hummingbirds can be collected with the proper permits. The Arizona-Sonora Desert Museum usually has species such as Anna's (Calypte anna), Costa's (Calypte costae), and Broad-billed (Cynanthus latirostris) for surplus each year if these species have nested in their Hummingbird Exhibit. In addition to keeping some native species, the San Diego Zoo has tried to maintain several exotic species such as Sparkling violet-ear (Colibri coruscans), Emerald (Amazilia amazilia), Oasis (Rhodopis vesper), etc. The San Diego Wild Animal Park has a large mixed species glass walk-through enclosure and has kept and produced hummingbirds over the years. All hummingbirds are on Appendix II of CITES and thus are covered under the Wild Bird Conservation Act (WBCA). An import permit from USFWS and an export permit from the country of origin must be obtained prior to the importation. Permits have been granted in the past, but currently it is difficult to find a country willing to export hummingbirds. Hummingbirds are more commonly kept in European collections, particularly private collections, and could be a source for future imports. Weighing Hummingbirds can be placed in a soft mesh bag and weighed with a spring scale. Electronic digital platform scales can also be used. A small wooden crate with a wire mesh front can also be used for weighing.
    [Show full text]
  • Aullwood's Birds (PDF)
    Aullwood's Bird List This list was collected over many years and includes birds that have been seen at or very near Aullwood. The list includes some which are seen only every other year or so, along with others that are seen year around. Ciconiiformes Great blue heron Green heron Black-crowned night heron Anseriformes Canada goose Mallard Blue-winged teal Wood duck Falconiformes Turkey vulture Osprey Sharp-shinned hawk Cooper's hawk Red-tailed hawk Red-shouldered hawk Broad-winged hawk Rough-legged hawk Marsh hawk American kestrel Galliformes Bobwhite Ring-necked pheasant Gruiformes Sandhill crane American coot Charadriformes Killdeer American woodcock Common snipe Spotted sandpiper Solitary sandpiper Ring-billed gull Columbiformes Rock dove Mourning dove Cuculiformes Yellow-billed cuckoo Strigiformes Screech owl Great horned owl Barred owl Saw-whet owl Caprimulgiformes Common nighthawk Apodiformes Chimney swift Ruby-throated hummingbird Coraciformes Belted kinghisher Piciformes Common flicker Pileated woodpecker Red-bellied woodpecker Red-headed woodpecker Yellow-bellied sapsucker Hairy woodpecker Downy woodpecker Passeriformes Eastern kingbird Great crested flycatcher Eastern phoebe Yellow-bellied flycatcher Acadian flycatcher Willow flycatcher Least flycatcher Eastern wood pewee Olive-sided flycatcher Tree swallow Bank swallow Rough-winged swallow Barn swallow Purple martin Blue jay Common crow Black-capped chickadee Carolina chickadee Tufted titmouse White-breasted nuthatch Red-breasted nuthatch Brown creeper House wren Winter wren
    [Show full text]
  • CP Bird Collection
    Lab Practical 2: Apodiformes - Passeriformes # = Male and Female * = Specimen out only once Timaliidae Emberizidae Apodiformes Wrentit Abert's Towhee Apodidae California Towhee White-throated Swift Paridae Mountain Chickadee Trochilidae Dark-eyed Junco Oak Titmouse # Anna's Hummingbird Golden-crowned Sparrow Aegithalidae Black-chinned Hummingbird Green-tailed Towhee Bushtit Calliope Hummingbird Lincoln's Sparrow Sittidae Costa's Hummingbird Sage Sparrow Pygmy Nuthatch Savannah Sparrow Coraciiformes White-breasted Nuthatch Spotted Towhee Alcedinidae Troglodytidae White-crowned Sparrow Belted Kingfisher Bewick's Wren Cardinalidae Piciformes Cactus Wren # Black-headed Grosbeak Picidae House Wren Blue Grosbeak Acorn Woodpecker Rock Wren Lazuli Bunting Downy Woodpecker Cinclidae # Western Tanager American Dipper Lewis's Woodpecker Icteridae Regulidae # Northern Flicker # Brewer's Blackbird # Ruby-crowned Kinglet Nuttall's Woodpecker # Brown-headed Cowbird Turdidae Red-breasted Sapsucker # Bullock's Oriole American Robin Red-naped Sapsucker # Hooded Oriole Hermit Thrush # Red-winged Blackbird Passeriformes Swainson's Thrush Tyrannidae Tricolored Blackbird # Western Bluebird Ash-throated Flycatcher Western Meadowlark Mimidae Black Phoebe # Yellow-headed Blackbird California Thrasher Cassin's Kingbird Fringillidae Crissal Thrasher Pacific-slope Flycatcher # Cassin's Finch Northern Mockingbird Say's Phoebe # House Finch Sturnidae Western Kingbird Lesser Goldfinch European Starling Pine Siskin Western Wood-Pewee Bombycillidae Passeridae Laniidae Cedar Waxwing # House Sparrow Loggerhead Shrike Ptilogonatidae Corvidae Phainopepla American Crow Parulidae Clark's Nutcracker Common Yellowthroat Mexican Jay MacGillivray's Warbler Steller's Jay Orange-crowned Warbler Western Scrub-Jay Townsend's Warbler Alaudidae Wilson's Warbler Horned Lark Yellow-breasted Chat Hirundinidae Yellow-rumped Warbler Cliff Swallow Tree Swallow Violet-green Swallow SKELETAL SYSTEM ANATOMY In this section you will utilize skeletons and disarticulated bones to identify internal structures.
    [Show full text]
  • Energy Metabolism and Body Temperature in the Blue-Naped Mousebird (Urocolius Macrourus) During Torpor
    Ornis Fennica 76:211-219 . 1999 Energy metabolism and body temperature in the Blue-naped Mousebird (Urocolius macrourus) during torpor Ralph Schaub, Roland Prinzinger and Elke Schleucher Schaub, R., Prinzinger, R. &Schleucher, E., AK Stoffwechselphysiologie, Zoologisches Institut, Johann Wolfgang Goethe-Universitdt, Siesmayerstra²e 70, 60323 Frankfurt/ Main, Germany Received 13 March 1998, accepted IS September 1999 Mousebirds (Coliiformes) respond to cold exposure and food limitation with nightly bouts of torpor. During torpor, metabolic rate and body temperature decrease mark- edly, which results in energy savings. The decrease in body temperature is a regulated phenomenon as is also the arousal which occurs spontaneously without external stimuli. During arousal, Blue-naped Mousebirds warm at a rate of 1 °C/min . This process requires significant amounts of energy . Our calculations show that the overall savings for the whole day are 30% at an ambient temperature of 15°C when daylength is 10 hours . Using glucose assays and RQ measurements, we found that during fasting, the birds switch to non-carbohydrate metabolism at an early phase of the day . This may be one of triggers eliciting torpor. By using cluster analysis of glucose levels we could clearly divide the night phase into a period of effective energy saving (high glucose levels) and arousal (low glucose levels) . 1 . Introduction 1972) . This kind of nutrition is low in energy, so the birds may face periods of energy deficiency The aim of this study is to get information about (Schifter 1972). To survive these times of starva- the daily energy demand and the thermal regula- tion, they have developed a special physiological tion in small birds.
    [Show full text]
  • Bird Checklist
    Checklist of Birds of the National Butterfly Center Mission, Hidalgo County Texas (289 Species + 3 Forms) *indicates confirmed nesting UPDATED: September 28, 2021 Common Name (English) Scientific Name Spanish Name Order Anseriformes, Waterfowl Family Anatidae, Tree Ducks, Ducks, and Geese Black-bellied Whistling-Duck Dendrocygna autumnalis Pijije Alas Blancas Fulvous Whistling-Duck Dendrocygna bicolor Pijije Canelo Snow Goose Anser caerulescens Ganso Blanco Ross's Goose Anser rossii Ganso de Ross Greater White-fronted Goose Anser albifrons Ganso Careto Mayor Canada Goose Branta canadensis Ganso Canadiense Mayor Muscovy Duck (Domestic type) Cairina moschata Pato Real (doméstico) Wood Duck Aix sponsa Pato Arcoíris Blue-winged Teal Spatula discors Cerceta Alas Azules Cinnamon Teal Spatula cyanoptera Cerceta Canela Northern Shoveler Spatula clypeata Pato Cucharón Norteño Gadwall Mareca strepera Pato Friso American Wigeon Mareca americana Pato Chalcuán Mexican Duck Anas (platyrhynchos) diazi Pato Mexicano Mottled Duck Anas fulvigula Pato Tejano Northern Pintail Anas acuta Pato Golondrino Green-winged Teal Anas crecca Cerceta Alas Verdes Canvasback Aythya valisineria Pato Coacoxtle Redhead Aythya americana Pato Cabeza Roja Ring-necked Duck Aythya collaris Pato Pico Anillado Lesser Scaup Aythya affinis Pato Boludo Menor Bufflehead Bucephala albeola Pato Monja Ruddy Duck Oxyura jamaicensis Pato Tepalcate Order Galliformes, Upland Game Birds Family Cracidae, Guans and Chachalacas Plain Chachalaca Ortalis vetula Chachalaca Norteña Family Odontophoridae,
    [Show full text]
  • 2020 National Bird List
    2020 NATIONAL BIRD LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Kingdom – ANIMALIA Great Blue Heron Ardea herodias ORDER: Charadriiformes Phylum – CHORDATA Snowy Egret Egretta thula Lapwings and Plovers (Charadriidae) Green Heron American Golden-Plover Subphylum – VERTEBRATA Black-crowned Night-heron Killdeer Charadrius vociferus Class - AVES Ibises and Spoonbills Oystercatchers (Haematopodidae) Family Group (Family Name) (Threskiornithidae) American Oystercatcher Common Name [Scientifc name Roseate Spoonbill Platalea ajaja Stilts and Avocets (Recurvirostridae) is in italics] Black-necked Stilt ORDER: Anseriformes ORDER: Suliformes American Avocet Recurvirostra Ducks, Geese, and Swans (Anatidae) Cormorants (Phalacrocoracidae) americana Black-bellied Whistling-duck Double-crested Cormorant Sandpipers, Phalaropes, and Allies Snow Goose Phalacrocorax auritus (Scolopacidae) Canada Goose Branta canadensis Darters (Anhingidae) Spotted Sandpiper Trumpeter Swan Anhinga Anhinga anhinga Ruddy Turnstone Wood Duck Aix sponsa Frigatebirds (Fregatidae) Dunlin Calidris alpina Mallard Anas platyrhynchos Magnifcent Frigatebird Wilson’s Snipe Northern Shoveler American Woodcock Scolopax minor Green-winged Teal ORDER: Ciconiiformes Gulls, Terns, and Skimmers (Laridae) Canvasback Deep-water Waders (Ciconiidae) Laughing Gull Hooded Merganser Wood Stork Ring-billed Gull Herring Gull Larus argentatus ORDER: Galliformes ORDER: Falconiformes Least Tern Sternula antillarum Partridges, Grouse, Turkeys, and
    [Show full text]
  • Conjugate and Disjunctive Saccades in Contrasting Oculomotor
    0270-6474/0506-i 418$02.00/O The Journal of Neuroscmce Copyright 0 Society for Neuroscience Vol. 5. No. 6 pp. 1418-1428 Printed m U.S.A. June 1985 Conjugate and Disjunctive Saccades in Two Avian Species with Contrasting Oculomotor Strategies’ JOSH WALLMAN* AND JOHN D. PETTIGREWS3 *Department of Biology, City College of City University of New York, New York, New York 10031, and *National Vision Research institute of Australia, 386 Cardigan Street, Car/ton 3052, Australia Abstract intervals. We hypothesize that saccades have such an endogenous pattern in time and space, and that this pattern represents an We have recorded with the magnetic search coil method oculomotor strategy for a species. the spontaneous saccades of two species of predatory birds, As a start in investigating this hypothesis, we have taken advan- which differ in the relative importance of panoramic and tage of the diversity of avian visual adaptations by studying spon- fovea1 vision. The little eagle (Haliaetus morphnoides) hunts taneous saccades made by two species, the tawny frogmouth and from great heights and has no predators, whereas the tawny the little eagle, which we presume have different oculomotor require- frogmouth (Podargus strigoides) hunts from perches near the ments, particularly with respect to binocular coordination. The sac- ground, is preyed upon, and frequently adopts an immobile cades of both eyes were studied as the animals freely viewed the camouflage posture. laboratory with their heads restrained. Although this situation is of We find that both birds spend most of the time with their course far from what the animals would experience in their natural eyes confined to a small region of gaze, the primary position circumstances, it provides an opportunity to compare the two of gaze; in this position, the visual axes are much more species under identical conditions without the complication of differ- diverged in the frogmouth than in the eagle, thereby giving it ences in head movements.
    [Show full text]
  • Airbirds: Adaptative Strategies to the Aerial Lifestyle from a Life History Perspective
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1998 Airbirds: Adaptative Strategies to the Aerial Lifestyle From a Life History Perspective. Manuel Marin-aspillaga Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Marin-aspillaga, Manuel, "Airbirds: Adaptative Strategies to the Aerial Lifestyle From a Life History Perspective." (1998). LSU Historical Dissertations and Theses. 6849. https://digitalcommons.lsu.edu/gradschool_disstheses/6849 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]