Why So Many Kinds of Passerine Birds?

Total Page:16

File Type:pdf, Size:1020Kb

Why So Many Kinds of Passerine Birds? Letters • Why so many kinds of passerine birds? Raikow and Bledsoe (2000), in em- Slud 1976). It is unreasonable to assume the list of possible reasons for passerine bracing the null model of Slowinski that there is no underlying biological rea- success, but I would place more empha- and Guyer (1989a, 1989b), may perhaps son for this pattern and for the major sis on it than he did. be said literally to have added nothing turnover in avifaunas in the Northern It is difficult to discuss the nest-bufld- to the Kst of suggestions for why there are Hemisphere in favor of passerines after ing capabilities of passerines without re- so many species of passerine birds. When the Oligocène. sorting to anthropomorphisms such as Raikow (1986) addressed this problem Reproductive adaptations presumably "clever" or "ingenious." Is it not mar- previously and could find no key mor- made the holometabolous insects velous, however, that a highly special- phological adaptations to explain the di- (Coleóptera, Díptera, Hymenoptera, ized aerial feeder such as a cliff swallow versity of Passeriformes, the so-called Lepidoptera, and so on) the dominant (Hirundo pyrrhonota), with tiny, weak songbirds or perching birds, he despaired clade of organisms on earth. Likewise, it bill and feet, can fashion a complex nest and suggested that the problem may be appears that reproductive adaptations, out of gobs of mud fastened to a flat, only "an accident of classificatory his- not morphology, are responsible for the vertical surface? What adjective suffices tory," which brought on a storm of protest dominance of passerine birds over other to describe the nest of tailorbirds {Systematic Zoology 37: 68-76; 41: 242- orders of birds. (Orthotomus), which actually stitch the 247). Now, Raikow and Bledsoe have sub- Most arboreal nonpasserine birds are edges of two leaves together with plant stituted one form of nihilism for another. obligate cavity nesters that rely on holes fibers to provide a concealed cup in The nuH model formulation deals merely in trees, earthen banks, or termite nests. which to place their nest? The long wo- with numerical probability and lacks any This automatically restricts them to habi- ven bags of oropendulas and relatives explanatory value in this case, unless per- tats where those features are present and (Icteridae) and the various complex wo- haps it could be shown that no evolu- at the same time makes competition for ven structures made by weaverbirds tionary forces influenced patterns of nest sites severe. Cavities cannot be read- (Ploceidae) are well-known examples of speciation in birds. ily concealed and numerous predators the complexity of passerine nest types. What is known about the dynamics exploit the vulnerability of cavity-dweUing The delicate cup nests of gnatcatchers and timing of the radiation of the order organisms (snakes, certain hawks, and so (Poliopttla), made of spider webs cov- Passeriformes does not support the suc- on). On the other hand, passerine birds, ered with lichens and fastened to a hor- cess of these birds being due to random both oscines and suboscines, have an ex- izontal limb, or the cup nest of the processes. Similar early and middle traordinary abñity to fashion nests out of Australian sitellas (Sitella), placed in an Eocene avifaunas from the United States a wide variety of materials, to place them acutely angled crotch and covered with (Wyoming), England, and Germany show in an equally wide variety of situations, minute, verticafly-oriented strips of bark, that by about 50 million years ago, Europe and, when need be, to camouflage or con- are exquisite uses of camouflage among and North America were inhabited by a ceal them with unusual "resourcefijlness." passerines. diverse array of arboreal birds, some of That the ability of passerines to protect Baptista and Trafl (1992) emphasized very small size, but not one of which was their eggs and young in this manner may the abflity of passerines to move into new a passerine (Olson 1989, Mayr 1998a, have led to their success as a group is not environments as a key factor in the suc- 1998b, 2000). Although passerines oc- a new idea, having been advanced clearly cess of the order. If there is any single at- cured in the early Eocene of Australia and in some detail by Irwin (1962) in an tribute that would make this possible, it (Boles 1997), the earliest evidence of the otherwise obscure publication that has is the ability of passerines to adapt their order in the Northern Hemisphere is since been widely overlooked. CoUias breeding regimen to locally avaflable nest from the latest Oligocène (about 25 mil- (1997) added nest-buflding behavior to sites and nesting materials. The brain in lion years ago) of France (Mourer- the entire order appears to be "hard- Letters to the Editor Chauviré et al. 1996). Passerines do not wired" for nest-building inventiveness. BioScience become an important component of the Attn: Science Editor The next most successflfl order of birds in avifaunas of the Northern Hemisphere 1444 Eye St., NW Suite 200 terms of number of species is the until the Miocene (about 20 to 5 million Washington, DC 20005 Apodiformes (swifts and hummingbirds), years ago), when they radiated explo- The Stan of BioScietice reserves the right to edit species which also have complex and di- sively. Passerines are now the numeri- letters for length or clarity without notifying verse nest-building habits. This is un- cally dominant group of birds in virtually the author. Letters are published as space likely to be coincidental. becomes available. all geographical areas of the globe (see 268 BioScience • April 2001 I Vol. 51 No. 4 » Letters As a morphologist, I am quite willing . 2000. Tiny hoopoe-like birds from the To understand the value of null to concede that morphology is not going Middle Eocene of Messel (Germany). Auk model approaches, consider the ques- to provide the answer to the numerical 117:964-970. tion "How different do sister taxa need dominance of the Passeriformes. Mor- Mourer-Chaviré C, Hugueney M, Jonet P. 1996. to be in species richness to cause a phology WÜ1 stiU be useful, in tandem Paleogene avian localities of France. Pages search for a deterministic explanation with molecular studies, in providing 567-598 in Mlikovsky J. Tertiary avian locali- for the difference?" Would sister groups much-needed improvements in our un- ties of Europe. Acta Universitatis Caroliniae of, say, 100 and 110 species, respectively, derstanding of relationships within the Geológica 39: 519-846. differ sufficiently to warrant a search for Passeriformes, which, in contrast to the Olson SL. 1989. Aspects of global avifaunal an explanation like the one Olson pro- impression given by Raikow and Bledsoe, dynamics during the Cenozoic. Acta XIX poses for passerine diversity? Exacfly how is still very imperfect. At the same time, Congressus Internationalis Ornithologici 2: different must groups be in species rich- a detailed analysis of nest types could 2023-2029. ness before one would be willing to in- also contribute materially to a better phy- Raikow RI. 1986. Why are there so many kinds of voke a deterministic, as opposed to logenetic fi-amework and lead to fasci- passerine birds? Systematic Zoology 35: stochastic, cause for the difference? nating insights into divergence and 255-259. As noted in our article, and contrary to convergence in nest-building behavior. Raikow RI, Bledsoe AH. 2000. Phylogeny and evo- Olson's implication at the end of his first Another fruitful avenue of investigation lution of the passerine birds. BioScience 50: paragraph, we are not arguing here that would be descriptive and experimental 487^99. the number of species in a given clade has studies of the neuroanatomy and neuro- Slowinski JB, Guyer C. 1989a. Testing null models no antecedent causes. It of course must. physiology of nest-building behavior, in questions of evolutionary success. System- Instead, we merely ask by how much sis- along the lines of the studies of vocaliza- atic Zoology 38: 189-191. ter groups must differ in species rich- tions that have generated so much at- . 1989b. Testing the stochasticity of pat- ness to prompt a search for an tention in ornithology in recent years. It terns of organismal diversity: An improved explanation for the difference in the adap- is time for the analysis of passerine suc- null model. American Naturalist 134: tations possessed by the groups. We reit- cess to progress beyond disheartened sor- 907-921. erate that the null model approach is ties into semantics and probability Slud P. 1976. Geographic and climatic relation- designed precisely to answer the ques- statistics and enter the realm of enthusi- ships of avifaunas with special reference to tion of whether such a search is required. astic biological exploration. comparative distribution in the Neotropics. Gotelli and Graves (1996) identify five STORRS L. OLSON Smithsonian Contributions to Zoology 212: important features of null models. With Department of Vertebrate Zoology 1-149. respect to Olson's statement that the nuH National Museum of Natural History model we used "lacks any explanatory Smithsonian Institution Response from Raikow and value," we believe its most important fea- Washington, DC 20560 Bledsoe tures are (1) that it allows for the possi- Olson makes two main points in his bility that no deterministic mechanism is References cited letter. He criticizes our appKcation of operating to produce an observed result; Baptista LF, Trail PW. 1992. The role of song in a null model to the study of the diversity (2) that stochastic processes may be re- the evolution of passerine diversity. Systemat- of passerine birds, and he offers the hy- sponsible for a result; and (3) that parsi- ic Biology 41: 242-247.
Recommended publications
  • Red-Winged Blackbirds: I. Age-Related Epaulet Color Changes in Captive Females1
    Copyright © 1980 Ohio Acad. Sci. 0030-0950/80/0005-0232 $2.00/0 RED-WINGED BLACKBIRDS: I. AGE-RELATED EPAULET COLOR CHANGES IN CAPTIVE FEMALES1 MILDRED MISKIMEN, Put-in-Bay, OH 43456 Abstract. Twenty-four female red-winged blackbirds (Agelaius phoeniceus) were trapped when juveniles and held captive during 3.5 years of observation. Color changes in upper secondary coverts (epaulets) of wings occurred at the time of the late-summer molt of the birds' first and second years. About 84% of birds had dilute rust epaulets after their first molt; 16% had orange. After the molt of the second year, 100% of the birds acquired bright rust or orange epaulets. Thus, outside of the later-summer molting period, females with orange, rust or red epaulets would by chance be 86% after-second-year birds and 14% second year birds. Observations of females caught in fall banding operations supported these findings; 10% of 109 birds in their first winter had bright rust or orange epaulets, and 90% had dilute rust epaulets. OHIO J. SCI. 80(5): 232, 1980 Plumages of red-winged blackbirds uncertainty of the age estimates. Both have been well documented since the be- Francis and Dolbeer could have inter- ginning of this century with classical preted their results with more confidence works by Dwight (1900) and Ridgeway if they had been reasonably certain of the (1902) and more recent work by Meanley ages of the birds they studied. The same and Bond (1970). Emphasis has been on principle could apply to other studies male plumage, especially regarding the recorded in the literature.
    [Show full text]
  • Miles, William Thomas Stead (2010) Ecology, Behaviour and Predator- Prey Interactions of Great Skuas and Leach's Storm-Petrels at St Kilda
    Miles, William Thomas Stead (2010) Ecology, behaviour and predator- prey interactions of Great Skuas and Leach's Storm-petrels at St Kilda. PhD thesis. http://theses.gla.ac.uk/2297/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Ecology, behaviour and predator-prey interactions of Great Skuas and Leach’s Storm-petrels at St Kilda W. T. S. Miles Submitted for the degree of Doctor of Philosophy to the Faculty of Biomedical and Life Sciences, University of Glasgow June 2010 For Alison & Patrick Margaret & Gurney, Edna & Dennis 1 …after sunset, a first shadowy bird would appear circling over the ruins, seen intermittently because of its wide circuit in the thickening light. The fast jerky flight seemed feather-light, to have a buoyant butterfly aimlessness. Another appeared, and another. Island Going (1949 ): Leach’s Petrel 2 Declaration I declare that the work described in this thesis is of my own composition and has been carried out entirely by myself unless otherwise cited or acknowledged.
    [Show full text]
  • The Migration Strategy, Diet & Foraging Ecology of a Small
    The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment Renata Jorge Medeiros Mirra September 2010 Thesis submitted for the degree of Doctor of Philosophy, Cardiff School of Biosciences, Cardiff University UMI Number: U516649 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U516649 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Declarations & Statements DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed j K>X).Vr>^. (candidate) Date: 30/09/2010 STATEMENT 1 This thasjs is being submitted in partial fulfillment of the requirements for the degree o f ..................... (insertMCh, MD, MPhil, PhD etc, as appropriate) Signed . .Ate .^(candidate) Date: 30/09/2010 STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledgedjjy explicit references. Signe .. (candidate) Date: 30/09/2010 STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.
    [Show full text]
  • Brown2009chap67.Pdf
    Swifts, treeswifts, and hummingbirds (Apodiformes) Joseph W. Browna,* and David P. Mindella,b Hirundinidae, Order Passeriformes), and between the aDepartment of Ecology and Evolutionary Biology & University nectivorous hummingbirds and sunbirds (Family Nec- of Michigan Museum of Zoology, 1109 Geddes Road, University tariniidae, Order Passeriformes), the monophyletic sta- b of Michigan, Ann Arbor, MI 48109-1079, USA; Current address: tus of Apodiformes has been well supported in all of the California Academy of Sciences, 55 Concourse Drive Golden Gate major avian classiA cations since before Fürbringer (3). Park, San Francisco, CA 94118, USA *To whom correspondence should be addressed (josephwb@ A comprehensive historical review of taxonomic treat- umich.edu) ments is available (4). Recent morphological (5, 6), genetic (4, 7–12), and combined (13, 14) studies have supported the apodiform clade. Although a classiA cation based on Abstract large DNA–DNA hybridization distances (4) promoted hummingbirds and swiJ s to the rank of closely related Swifts, treeswifts, and hummingbirds constitute the Order orders (“Trochiliformes” and “Apodiformes,” respect- Apodiformes (~451 species) in the avian Superorder ively), the proposed revision does not inP uence evolu- Neoaves. The monophyletic status of this traditional avian tionary interpretations. order has been unequivocally established from genetic, One of the most robustly supported novel A ndings morphological, and combined analyses. The apodiform in recent systematic ornithology is a close relation- timetree shows that living apodiforms originated in the late ship between the nocturnal owlet-nightjars (Family Cretaceous, ~72 million years ago (Ma) with the divergence Aegothelidae, Order Caprimulgiformes) and the trad- of hummingbird and swift lineages, followed much later by itional Apodiformes.
    [Show full text]
  • The Relationships of the Starlings (Sturnidae: Sturnini) and the Mockingbirds (Sturnidae: Mimini)
    THE RELATIONSHIPS OF THE STARLINGS (STURNIDAE: STURNINI) AND THE MOCKINGBIRDS (STURNIDAE: MIMINI) CHARLESG. SIBLEYAND JON E. AHLQUIST Departmentof Biologyand PeabodyMuseum of Natural History,Yale University, New Haven, Connecticut 06511 USA ABSTRACT.--OldWorld starlingshave been thought to be related to crowsand their allies, to weaverbirds, or to New World troupials. New World mockingbirdsand thrashershave usually been placed near the thrushesand/or wrens. DNA-DNA hybridization data indi- cated that starlingsand mockingbirdsare more closelyrelated to each other than either is to any other living taxon. Some avian systematistsdoubted this conclusion.Therefore, a more extensiveDNA hybridizationstudy was conducted,and a successfulsearch was made for other evidence of the relationshipbetween starlingsand mockingbirds.The resultssup- port our original conclusionthat the two groupsdiverged from a commonancestor in the late Oligoceneor early Miocene, about 23-28 million yearsago, and that their relationship may be expressedin our passerineclassification, based on DNA comparisons,by placing them as sistertribes in the Family Sturnidae,Superfamily Turdoidea, Parvorder Muscicapae, Suborder Passeres.Their next nearest relatives are the members of the Turdidae, including the typical thrushes,erithacine chats,and muscicapineflycatchers. Received 15 March 1983, acceptedI November1983. STARLINGS are confined to the Old World, dine thrushesinclude Turdus,Catharus, Hylocich- mockingbirdsand thrashersto the New World. la, Zootheraand Myadestes.d) Cinclusis
    [Show full text]
  • Similarities in Body Size Distributions of Small-Bodied Flying Vertebrates
    Evolutionary Ecology Research, 2004, 6: 783–797 Similarities in body size distributions of small-bodied flying vertebrates Brian A. Maurer,* James H. Brown, Tamar Dayan, Brian J. Enquist, S.K. Morgan Ernest, Elizabeth A. Hadly, John P. Haskell, David Jablonski, Kate E. Jones, Dawn M. Kaufman, S. Kathleen Lyons, Karl J. Niklas, Warren P. Porter, Kaustuv Roy, Felisa A. Smith, Bruce Tiffney and Michael R. Willig National Center for Ecological Analysis and Synthesis (NCEAS), Working Group on Body Size in Ecology and Paleoecology, 735 State Street, Suite 300, Santa Barbara, CA 93101-5504, USA ABSTRACT Since flight imposes physical constraints on the attributes of a flying organism, it is expected that the distribution of body sizes within clades of small-bodied flying vertebrates should share a similar pattern that reflects these constraints. We examined patterns in similarities of body mass distributions among five clades of small-bodied endothermic vertebrates (Passeriformes, Apodiformes + Trochiliformes, Chiroptera, Insectivora, Rodentia) to examine the extent to which these distributions are congruent among the clades that fly as opposed to those that do not fly. The body mass distributions of three clades of small-bodied flying vertebrates show significant divergence from the distributions of their sister clades. We examined two alternative hypotheses for similarities among the size frequency distributions of the five clades. The hypothesis of functional symmetry corresponds to patterns of similarity expected if body mass distributions of flying clades are constrained by similar or identical functional limitations. The hypothesis of phylogenetic symmetry corresponds to patterns of similarity expected if body mass distributions reflect phylogenetic relationships among clades.
    [Show full text]
  • 1 Husbandry Guidelines Apodiformes Hummingbirds-Trochilidae Karen
    Husbandry Guidelines Apodiformes Hummingbirds-Trochilidae Karen Krebbs, Conservation Biologist / Arizona-Sonora Desert Museum / Tucson, AZ Dave Rimlinger, Curator of Ornithology / San Diego Zoo / San Diego, CA Michael Mace, Curator of Ornithology / San Diego Wild Animal Park / Escondido, CA September, 2002 1. ACQUISITION AND ACCLIMATIZATION Sources of birds & acclimatization procedures - In the United States local species of hummingbirds can be collected with the proper permits. The Arizona-Sonora Desert Museum usually has species such as Anna's (Calypte anna), Costa's (Calypte costae), and Broad-billed (Cynanthus latirostris) for surplus each year if these species have nested in their Hummingbird Exhibit. In addition to keeping some native species, the San Diego Zoo has tried to maintain several exotic species such as Sparkling violet-ear (Colibri coruscans), Emerald (Amazilia amazilia), Oasis (Rhodopis vesper), etc. The San Diego Wild Animal Park has a large mixed species glass walk-through enclosure and has kept and produced hummingbirds over the years. All hummingbirds are on Appendix II of CITES and thus are covered under the Wild Bird Conservation Act (WBCA). An import permit from USFWS and an export permit from the country of origin must be obtained prior to the importation. Permits have been granted in the past, but currently it is difficult to find a country willing to export hummingbirds. Hummingbirds are more commonly kept in European collections, particularly private collections, and could be a source for future imports. Weighing Hummingbirds can be placed in a soft mesh bag and weighed with a spring scale. Electronic digital platform scales can also be used. A small wooden crate with a wire mesh front can also be used for weighing.
    [Show full text]
  • Passerines: Perching Birds
    3.9 Orders 9: Passerines – perching birds - Atlas of Birds uncorrected proofs 3.9 Atlas of Birds - Uncorrected proofs Copyrighted Material Passerines: Perching Birds he Passeriformes is by far the largest order of birds, comprising close to 6,000 P Size of order Cardinal virtues Insect-eating voyager Multi-purpose passerine Tspecies. Known loosely as “perching birds”, its members differ from other Number of species in order The Northern or Common Cardinal (Cardinalis cardinalis) The Common Redstart (Phoenicurus phoenicurus) was The Common Magpie (Pica pica) belongs to the crow family orders in various fine anatomical details, and are themselves divided into suborders. Percentage of total bird species belongs to the cardinal family (Cardinalidae) of passerines. once thought to be a member of the thrush family (Corvidae), which includes many of the larger passerines. In simple terms, however, and with a few exceptions, passerines can be described Like the various tanagers, grosbeaks and other members (Turdidae), but is now known to belong to the Old World Like many crows, it is a generalist, with a robust bill adapted of this diverse group, it has a thick, strong bill adapted to flycatchers (Muscicapidae). Its narrow bill is adapted to to feeding on anything from small animals to eggs, carrion, as small birds that sing. feeding on seeds and fruit. Males, from whose vivid red eating insects, and like many insect-eaters that breed in insects, and grain. Crows are among the most intelligent of The word passerine derives from the Latin passer, for sparrow, and indeed a sparrow plumage the family is named, are much more colourful northern Europe and Asia, this species migrates to Sub- birds, and this species is the only non-mammal ever to have is a typical passerine.
    [Show full text]
  • Dinosaur Incubation Periods Directly Determined from Growth-Line Counts in Embryonic Teeth Show Reptilian-Grade Development
    Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development Gregory M. Ericksona,1, Darla K. Zelenitskyb, David Ian Kaya, and Mark A. Norellc aDepartment of Biological Science, Florida State University, Tallahassee, FL 32306-4295; bDepartment of Geoscience, University of Calgary, Calgary, AB, Canada T2N 1N4; and cDivision of Paleontology, American Museum of Natural History, New York, NY 10024 Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved December 1, 2016 (received for review August 17, 2016) Birds stand out from other egg-laying amniotes by producing anatomical, behavioral and eggshell attributes of birds related to relatively small numbers of large eggs with very short incubation reproduction [e.g., medullary bone (32), brooding (33–36), egg- periods (average 11–85 d). This aspect promotes high survivorship shell with multiple structural layers (37, 38), pigmented eggs (39), by limiting exposure to predation and environmental perturba- asymmetric eggs (19, 40, 41), and monoautochronic egg pro- tion, allows for larger more fit young, and facilitates rapid attain- duction (19, 40)] trace back to their dinosaurian ancestry (42). For ment of adult size. Birds are living dinosaurs; their rapid development such reasons, rapid avian incubation has generally been assumed has been considered to reflect the primitive dinosaurian condition. throughout Dinosauria (43–45). Here, nonavian dinosaurian incubation periods in both small and Incubation period estimates using regressions of typical avian large ornithischian taxa are empirically determined through growth- values relative to egg mass range from 45 to 80 d across the line counts in embryonic teeth.
    [Show full text]
  • USE of the EXTANT PHYLOGENETIC BRACKET (EPB) CONCEPT in RECONSTRUCTING the DINOSAUR RESPIRATORY Systel\1
    293 USE OF THE EXTANT PHYLOGENETIC BRACKET (EPB) CONCEPT IN RECONSTRUCTING THE DINOSAUR RESPIRATORY SYSTEl\1. NORTON, James M., University of New England, 11 Hill's Beach Road, Biddeford, ME 04005, U.S.A. The EPB concept was developed to provide a framework for inferring soft tissue structures in extinct animals and is applied here to a characterization of the dinosaur respiratory apparatus. The recognized EPB for dinosaurs consists of crocodilians and modern birds, and the respiratory systems of these animals appear to be quite different. Crocodilians have complex multicamerallungs fixed within the thorax, with main intrapulmonary bronchi that communicate with three rows of air chambers. The lungs are ventilated in a tidal pattern by changes in thoracic volume produced primarily by piston-like motions of the liver and abdominal organs. In contrast, the avian respiratory system is separated into rigid lungs for gas exchange and air sacs that serve as a bello~vs-like ventilatory apparatus providing relatively constant, unidirectional air flow through the gas exchange regions. The underlying structural affinity of these apparently dissimilar lung types is demonstrable through a comparative study of their embryology. The avian system represents an embryological fusion of crocodilian-type lateral chambers originating at different points along the intrapulmonary bronchus to form parabronchi. An accompanying expansion of other chambers forms the air sacs. In this EPB analysis, the bracket node (shared by crocodilians, dinosaurs, and birds) would therefore possess a multicameral, crocodilian-type lung. The outgroup node (shared by dinosaurs and birds) would possess a relatively rigid, fixed-volume parabronchial lung with associated air sacs, similar to the paleopulmo possessed by all modern birds.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • The Reproductive Cycle of the Male Red-Winged Blackbird
    46 Vol. 46 THE REPRODUCTIVE CYCLE OF THE MALE RED-WINGED BLACKBIRD By PHILIP L. WRIGHT and MARGARET H. WRIGHT Most North American passerine birds come into adult plumage in their first year of life so that yearling and older birds are indistinguishable during the breeding season. In several species, among them the Red-winged Blackbird (Agelaius phoeniceus), the adult male plumage is not acquired until after the breeding season in the second year, when the birds are 13 to 15 months of age. McIlhenny (1940) states that the year-old male Red-wings in Louisiana do not breed. Most authors, if they mention the plumage of the yearling male at all, designate it as an immature plumage (Bailey, 1917 ; Chap- man, 1934; Peterson, 1939 and 1941), although at least two (Dwight, 1900; Forbush, 1927) call it the first nuptial plumage. In his extensive study of the ecology of the East- ern Red-wing (Age&us p. phoeniceus), Allen ( 1914) briefly describesthe grosschanges in the testes of Red-wings taken in the spring months. His collections apparently were not extensive, and he makes no statement concerning the final state of the testes of the yearling males, which he calls “immature.” He does state, however (p. 95), that “the resident immature males” migrate later in the spring and breed later than do the adults. Smith (1943) states that in the region of Chicago “males with duller brownish feather tips on the body and the wing coverts” establish territories though they do so later than the adult males. There seems to be no doubt but that the yearling females of Agelaius pkoemiceusbreed.
    [Show full text]