Similarities in Body Size Distributions of Small-Bodied Flying Vertebrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why So Many Kinds of Passerine Birds?
Letters • Why so many kinds of passerine birds? Raikow and Bledsoe (2000), in em- Slud 1976). It is unreasonable to assume the list of possible reasons for passerine bracing the null model of Slowinski that there is no underlying biological rea- success, but I would place more empha- and Guyer (1989a, 1989b), may perhaps son for this pattern and for the major sis on it than he did. be said literally to have added nothing turnover in avifaunas in the Northern It is difficult to discuss the nest-bufld- to the Kst of suggestions for why there are Hemisphere in favor of passerines after ing capabilities of passerines without re- so many species of passerine birds. When the Oligocène. sorting to anthropomorphisms such as Raikow (1986) addressed this problem Reproductive adaptations presumably "clever" or "ingenious." Is it not mar- previously and could find no key mor- made the holometabolous insects velous, however, that a highly special- phological adaptations to explain the di- (Coleóptera, Díptera, Hymenoptera, ized aerial feeder such as a cliff swallow versity of Passeriformes, the so-called Lepidoptera, and so on) the dominant (Hirundo pyrrhonota), with tiny, weak songbirds or perching birds, he despaired clade of organisms on earth. Likewise, it bill and feet, can fashion a complex nest and suggested that the problem may be appears that reproductive adaptations, out of gobs of mud fastened to a flat, only "an accident of classificatory his- not morphology, are responsible for the vertical surface? What adjective suffices tory," which brought on a storm of protest dominance of passerine birds over other to describe the nest of tailorbirds {Systematic Zoology 37: 68-76; 41: 242- orders of birds. -
Brown2009chap67.Pdf
Swifts, treeswifts, and hummingbirds (Apodiformes) Joseph W. Browna,* and David P. Mindella,b Hirundinidae, Order Passeriformes), and between the aDepartment of Ecology and Evolutionary Biology & University nectivorous hummingbirds and sunbirds (Family Nec- of Michigan Museum of Zoology, 1109 Geddes Road, University tariniidae, Order Passeriformes), the monophyletic sta- b of Michigan, Ann Arbor, MI 48109-1079, USA; Current address: tus of Apodiformes has been well supported in all of the California Academy of Sciences, 55 Concourse Drive Golden Gate major avian classiA cations since before Fürbringer (3). Park, San Francisco, CA 94118, USA *To whom correspondence should be addressed (josephwb@ A comprehensive historical review of taxonomic treat- umich.edu) ments is available (4). Recent morphological (5, 6), genetic (4, 7–12), and combined (13, 14) studies have supported the apodiform clade. Although a classiA cation based on Abstract large DNA–DNA hybridization distances (4) promoted hummingbirds and swiJ s to the rank of closely related Swifts, treeswifts, and hummingbirds constitute the Order orders (“Trochiliformes” and “Apodiformes,” respect- Apodiformes (~451 species) in the avian Superorder ively), the proposed revision does not inP uence evolu- Neoaves. The monophyletic status of this traditional avian tionary interpretations. order has been unequivocally established from genetic, One of the most robustly supported novel A ndings morphological, and combined analyses. The apodiform in recent systematic ornithology is a close relation- timetree shows that living apodiforms originated in the late ship between the nocturnal owlet-nightjars (Family Cretaceous, ~72 million years ago (Ma) with the divergence Aegothelidae, Order Caprimulgiformes) and the trad- of hummingbird and swift lineages, followed much later by itional Apodiformes. -
1 Husbandry Guidelines Apodiformes Hummingbirds-Trochilidae Karen
Husbandry Guidelines Apodiformes Hummingbirds-Trochilidae Karen Krebbs, Conservation Biologist / Arizona-Sonora Desert Museum / Tucson, AZ Dave Rimlinger, Curator of Ornithology / San Diego Zoo / San Diego, CA Michael Mace, Curator of Ornithology / San Diego Wild Animal Park / Escondido, CA September, 2002 1. ACQUISITION AND ACCLIMATIZATION Sources of birds & acclimatization procedures - In the United States local species of hummingbirds can be collected with the proper permits. The Arizona-Sonora Desert Museum usually has species such as Anna's (Calypte anna), Costa's (Calypte costae), and Broad-billed (Cynanthus latirostris) for surplus each year if these species have nested in their Hummingbird Exhibit. In addition to keeping some native species, the San Diego Zoo has tried to maintain several exotic species such as Sparkling violet-ear (Colibri coruscans), Emerald (Amazilia amazilia), Oasis (Rhodopis vesper), etc. The San Diego Wild Animal Park has a large mixed species glass walk-through enclosure and has kept and produced hummingbirds over the years. All hummingbirds are on Appendix II of CITES and thus are covered under the Wild Bird Conservation Act (WBCA). An import permit from USFWS and an export permit from the country of origin must be obtained prior to the importation. Permits have been granted in the past, but currently it is difficult to find a country willing to export hummingbirds. Hummingbirds are more commonly kept in European collections, particularly private collections, and could be a source for future imports. Weighing Hummingbirds can be placed in a soft mesh bag and weighed with a spring scale. Electronic digital platform scales can also be used. A small wooden crate with a wire mesh front can also be used for weighing. -
Generation of Earth's First-Order Biodiversity Pattern
ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2008.0253 Review Generation of Earth’s First-Order Biodiversity Pattern Andrew Z. Krug,1 David Jablonski,1 James W. Valentine,2 and Kaustuv Roy3 Abstract The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal di- versity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak orig- ination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predomi- nant spatial dynamic thereafter. The origination-diversity link occurs even in a “contrarian” group whose di- versity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to Ն latitudinal diversity patterns. Extinction rates are lower in polar latitudes ( 60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and im- migration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equa- torial to polar regions. -
CP Bird Collection
Lab Practical 2: Apodiformes - Passeriformes # = Male and Female * = Specimen out only once Timaliidae Emberizidae Apodiformes Wrentit Abert's Towhee Apodidae California Towhee White-throated Swift Paridae Mountain Chickadee Trochilidae Dark-eyed Junco Oak Titmouse # Anna's Hummingbird Golden-crowned Sparrow Aegithalidae Black-chinned Hummingbird Green-tailed Towhee Bushtit Calliope Hummingbird Lincoln's Sparrow Sittidae Costa's Hummingbird Sage Sparrow Pygmy Nuthatch Savannah Sparrow Coraciiformes White-breasted Nuthatch Spotted Towhee Alcedinidae Troglodytidae White-crowned Sparrow Belted Kingfisher Bewick's Wren Cardinalidae Piciformes Cactus Wren # Black-headed Grosbeak Picidae House Wren Blue Grosbeak Acorn Woodpecker Rock Wren Lazuli Bunting Downy Woodpecker Cinclidae # Western Tanager American Dipper Lewis's Woodpecker Icteridae Regulidae # Northern Flicker # Brewer's Blackbird # Ruby-crowned Kinglet Nuttall's Woodpecker # Brown-headed Cowbird Turdidae Red-breasted Sapsucker # Bullock's Oriole American Robin Red-naped Sapsucker # Hooded Oriole Hermit Thrush # Red-winged Blackbird Passeriformes Swainson's Thrush Tyrannidae Tricolored Blackbird # Western Bluebird Ash-throated Flycatcher Western Meadowlark Mimidae Black Phoebe # Yellow-headed Blackbird California Thrasher Cassin's Kingbird Fringillidae Crissal Thrasher Pacific-slope Flycatcher # Cassin's Finch Northern Mockingbird Say's Phoebe # House Finch Sturnidae Western Kingbird Lesser Goldfinch European Starling Pine Siskin Western Wood-Pewee Bombycillidae Passeridae Laniidae Cedar Waxwing # House Sparrow Loggerhead Shrike Ptilogonatidae Corvidae Phainopepla American Crow Parulidae Clark's Nutcracker Common Yellowthroat Mexican Jay MacGillivray's Warbler Steller's Jay Orange-crowned Warbler Western Scrub-Jay Townsend's Warbler Alaudidae Wilson's Warbler Horned Lark Yellow-breasted Chat Hirundinidae Yellow-rumped Warbler Cliff Swallow Tree Swallow Violet-green Swallow SKELETAL SYSTEM ANATOMY In this section you will utilize skeletons and disarticulated bones to identify internal structures. -
2020 National Bird List
2020 NATIONAL BIRD LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Kingdom – ANIMALIA Great Blue Heron Ardea herodias ORDER: Charadriiformes Phylum – CHORDATA Snowy Egret Egretta thula Lapwings and Plovers (Charadriidae) Green Heron American Golden-Plover Subphylum – VERTEBRATA Black-crowned Night-heron Killdeer Charadrius vociferus Class - AVES Ibises and Spoonbills Oystercatchers (Haematopodidae) Family Group (Family Name) (Threskiornithidae) American Oystercatcher Common Name [Scientifc name Roseate Spoonbill Platalea ajaja Stilts and Avocets (Recurvirostridae) is in italics] Black-necked Stilt ORDER: Anseriformes ORDER: Suliformes American Avocet Recurvirostra Ducks, Geese, and Swans (Anatidae) Cormorants (Phalacrocoracidae) americana Black-bellied Whistling-duck Double-crested Cormorant Sandpipers, Phalaropes, and Allies Snow Goose Phalacrocorax auritus (Scolopacidae) Canada Goose Branta canadensis Darters (Anhingidae) Spotted Sandpiper Trumpeter Swan Anhinga Anhinga anhinga Ruddy Turnstone Wood Duck Aix sponsa Frigatebirds (Fregatidae) Dunlin Calidris alpina Mallard Anas platyrhynchos Magnifcent Frigatebird Wilson’s Snipe Northern Shoveler American Woodcock Scolopax minor Green-winged Teal ORDER: Ciconiiformes Gulls, Terns, and Skimmers (Laridae) Canvasback Deep-water Waders (Ciconiidae) Laughing Gull Hooded Merganser Wood Stork Ring-billed Gull Herring Gull Larus argentatus ORDER: Galliformes ORDER: Falconiformes Least Tern Sternula antillarum Partridges, Grouse, Turkeys, and -
Airbirds: Adaptative Strategies to the Aerial Lifestyle from a Life History Perspective
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1998 Airbirds: Adaptative Strategies to the Aerial Lifestyle From a Life History Perspective. Manuel Marin-aspillaga Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Marin-aspillaga, Manuel, "Airbirds: Adaptative Strategies to the Aerial Lifestyle From a Life History Perspective." (1998). LSU Historical Dissertations and Theses. 6849. https://digitalcommons.lsu.edu/gradschool_disstheses/6849 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
DAVID SEPKOSKI Department of History University of Illinois, Champaign-Urbana Gregory Hall 301 810 S
DAVID SEPKOSKI Department of History University of Illinois, Champaign-Urbana Gregory Hall 301 810 S. Wright St. Urbana, IL 61801 [email protected] Updated 7/2020 ACADEMIC APPOINTMENTS 2018 - Thomas M. Siebel Chair in History of Science and Professor of History Affiliate Professor, School of Information University of Illinois, Urbana-Champaign 2012 - 2018 Max Planck Institute for the History of Science Senior Research Scholar, Department II 2006 - 2012 University of North Carolina Wilmington Associate Professor of History, 2010 - 2012 Assistant Professor of History, 2006 - 2010 2002 – 2006 Oberlin College Visiting Assistant Professor of History, 2004 - 2006 Mellon Postdoctoral Fellow in History, 2002 - 2004 EDUCATION 2002 University of Minnesota. Ph.D., Program in History of Science and Technology 1996 University of Chicago. A.M., Social Sciences 1994 Carleton College. B.A., History FELLOWSHIPS AND AWARDS 2020-21 John Simon Guggenheim Memorial Fellowship 2018-23 President’s Distinguished Faculty Hiring Program ($500,000 over 5 years for graduate student fellowships, research support, public programming and outreach), University of Illinois, Urbana-Champaign 2011 Visiting Fellow, Max Planck Institute for the History of Science, Department II, Berlin, Germany 2005-08 National Science Foundation STS Scholars Award. PI for grant funding “The Renaissance of Evolutionary Paleobiology, 1970-1985” Sepkoski 2 2007 Charles L. Cahill Award for Faculty Research and Development, UNC Wilmington 2006-07 FESR Investigator Fellow, UNC Wilmington 2005 Mead-Swing Fellow in the History of Science, Oberlin College 2004 Grant-in-Aid, Oberlin College, award for faculty research support 2000-01 Doctoral Dissertation Fellowship, University of Minnesota 1997-98 Graduate School Fellowship, University of Minnesota PUBLICATIONS Books 2020 Catastrophic Thinking: Extinction and the Value of Diversity Chicago: University of Chicago Press. -
Micro- and Macroevolution: Scale and Hierarchy in Evolutionary Biology and Paleobiology Author(S): David Jablonski Source: Paleobiology, Vol
Paleontological Society Micro- and Macroevolution: Scale and Hierarchy in Evolutionary Biology and Paleobiology Author(s): David Jablonski Source: Paleobiology, Vol. 26, No. 4, Supplement (Autumn, 2000), pp. 15-52 Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/1571652 Accessed: 28/10/2008 17:29 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=paleo. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Paleontological Society is collaborating with JSTOR to digitize, preserve and extend access to Paleobiology. http://www.jstor.org Copyright ( 2000, The Paleontological Society Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology David Jablonski Abstract. -
Phil. Trans. R. Soc. B
Downloaded from http://rstb.royalsocietypublishing.org/ on February 29, 2016 Feeding innovations in a nested phylogeny of Neotropical passerines rstb.royalsocietypublishing.org Louis Lefebvre, Simon Ducatez and Jean-Nicolas Audet Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montre´al, Que´bec, Canada H3A 1B1 Several studies on cognition, molecular phylogenetics and taxonomic diversity Research independently suggest that Darwin’s finches are part of a larger clade of speciose, flexible birds, the family Thraupidae, a member of the New World Cite this article: Lefebvre L, Ducatez S, Audet nine-primaried oscine superfamily Emberizoidea. Here, we first present a new, J-N. 2016 Feeding innovations in a nested previously unpublished, dataset of feeding innovations covering the Neotropi- phylogeny of Neotropical passerines. Phil. cal region and compare the stem clades of Darwin’s finches to other neotropical Trans. R. Soc. B 371: 20150188. clades at the levels of the subfamily, family and superfamily/order. Both in http://dx.doi.org/10.1098/rstb.2015.0188 terms of raw frequency as well as rates corrected for research effort and phylo- geny, the family Thraupidae and superfamily Emberizoidea show high levels of innovation, supporting the idea that adaptive radiations are favoured when Accepted: 25 November 2015 the ancestral stem species were flexible. Second, we discuss examples of inno- vation and problem-solving in two opportunistic and tame Emberizoid species, One contribution of 15 to a theme issue the Barbados bullfinch Loxigilla barbadensis and the Carib grackle Quiscalus ‘Innovation in animals and humans: lugubris fortirostris in Barbados. We review studies on these two species and argue that a comparison of L. -
Chimney Swift 2016 Bird of the Year BIRD-FRIENDLY COMMUNITIES
Chimney Swift 2016 Bird of the Year BIRD-FRIENDLY COMMUNITIES Background Conservation Status Over the past century, Chimney Swifts IUCN Red List of Threatened Species: (Chaetura pelagica) have been Near Threatened extremely adaptable – learning to Audubon Birds and Climate Change Report 2014: roost in urban chimneys as large Climate Stable hollow trees, their natural roosting sites, disappeared. But populations USGS Breeding Bird Survey trend 1966-2013 are decreasing steeply – 53 percent •Declined 2.48%/year between 1966 and 2007 in the survey-wide United States – as chimneys are •Declined 1.61%/year NC capped or removed, leaving fewer places for swifts to nest and raise 2016 Partners in Flight their young. During breeding, there is Landbird Conservation some sharing of chimneys for Plan: Common Bird in roosting, but only a single pair will Steep Decline – priority build a nest in a particular chimney. species for all eastern During migration, swifts will roost in regional Joint Ventures large numbers – often thousands of with predicted loss of 50% swifts in one chimney. Chimney Swifts of current global population breed in the central and eastern in under 30 years. Percent Change per Year United States and winter in the Less than 1.5 -1.5 to -0.25 Amazon basin of Peru, northern Chile, > -0.25 to 0.25 and northwest Brazil. > 0.25 to +1.5 Greater than +1.5 Four Ways You Can Help 1 Keep Your Chimney Open The practice of capping older chimneys makes 2 them inaccessible to swifts. One solution is to Be a Citizen hire a chimney sweep to Scientist cap the chimney in Report nesting and 3 November and open it up roosting sites at again before Chimney Construct A nc.audubon.org. -
(Diptera: Muscidae): an Invasive Avian Parasite on the Galápagos Islands Lauren K
Chapter Taxonomic Shifts in Philornis Larval Behaviour and Rapid Changes in Philornis downsi Dodge & Aitken (Diptera: Muscidae): An Invasive Avian Parasite on the Galápagos Islands Lauren K. Common, Rachael Y. Dudaniec, Diane Colombelli-Négrel and Sonia Kleindorfer Abstract The parasitic larvae of Philornis downsi Dodge & Aitken (Diptera: Muscidae) were first discovered in Darwin’s finch nests on the Galápagos Islands in 1997. Larvae of P. downsi consume the blood and tissue of developing birds, caus- ing high in-nest mortality in their Galápagos hosts. The fly has been spreading across the archipelago and is considered the biggest threat to the survival of Galápagos land birds. Here, we review (1) Philornis systematics and taxonomy, (2) discuss shifts in feeding habits across Philornis species comparing basal to more recently evolved groups, (3) report on differences in the ontogeny of wild and captive P. downsi larvae, (4) describe what is known about adult P. downsi behaviour, and (5) discuss changes in P. downsi behaviour since its discovery on the Galápagos Islands. From 1997 to 2010, P. downsi larvae have been rarely detected in Darwin’s finch nests with eggs. Since 2012, P. downsi larvae have regularly been found in the nests of incubating Darwin’s finches. Exploring P. downsi ontogeny and behaviour in the larger context of taxonomic relationships provides clues about the breadth of behavioural flexibility that may facilitate successful colonisation. Keywords: Protocalliphora, Passeromyia, Philornis, nest larvae, hematophagous, subcutaneous, Darwin’s finches, Passeriformes 1. Introduction Three genera of flies within the order Diptera have larvae that parasitise avian hosts: Protocalliphora Hough (Calliphoridae), as well as Passeromyia Rodhain & Villeneuve (Muscidae) and Philornis Meinert (Muscidae).