Mercury Waste Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Mercury Waste Solutions Exhibit B: MERCURY WASTE SOLUTIONS ACCEPTANCE GUIDELINES This information is being provided to assist you in determining which mercury-bearing materials are acceptable for processing and mercury recovery by Mercury Waste Solutions, Inc. (MWSI). Materials and compounds accepted for processing may be subject to regulations as hazardous wastes. Other non-mercury materials are also accepted for recycling. I. Mercury Waste Solutions is permitted to accept the following materials: A. Acceptable Mercury Wastes and Codes D001 as an oxidizer, D002, D004-D011, U151, K071, K106 & P092 Universal Waste batteries, lamps and thermostats B. Other Acceptable Materials Lighting Ballasts (PCB and non-PCB) Batteries (alkaline, lithium, and nickel cadmium) Obsolete Computer Equipment II. Mercury Waste Solutions is NOT permitted to accept the following materials: w Any F, K, P or U-listed wastes (other than U151 and K106) w Radioactive materials w Reactive materials (D003) (lithium batteries are accepted under Universal Waste Rule) w Regulated medical wastes w Dioxins w Pesticides and herbicides MERCURY WASTE SOLUTIONS ACCEPTABLE MATERIALS ACTIVATED CARBON/CHARCOAL BATTERIES Alkaline (with/without mercury - Universal Waste) A to N Batteries (Coast Guard, gel cell batteries) Lithium (Universal Waste) Mercuric Oxide (Universal Waste) Nickel Cadmium (Universal Waste) Zinc Air (with/ without mercury - Universal Waste) Zinc Carbon (with/without mercury - Universal Waste) CHLOR ALKALI PRODUCTION DEBRIS METALLIC MERCURY (pure/impure) CHLOR ALKALI PRODUCTION RESIDUE METAL SWITCHES CLEANUP KITS FOR MERCURY SPILLS MINING OPERATIONS DEBRIS COD TEST SOLUTIONS MINING OPERATIONS RESIDUES CONSTRUCTION/DEMOLITION DEBRIS PC BOARDS DEBRIS CONTAMINATED WITH MERCURY PERSONAL PROTECTIVE EQUIPMENT DENTAL AMALGAM PIPING CONTAMINATED WITH MERCURY DEVICES CONTAINING MERCURY PHOSPHOR POWDERS FLOORING CONTAMINATED WITH MERCURY PRESSURE REGULATORS (containing Mercury) FLUORESCENT LAMPS(whole, broken, crushed) RECTIFIERS GASTROINTESTINAL TUBES/DILATORS SILVER AMALGAM GLASS SWITCHES SILVER OXIDE FLOOR SWEEPINGS GLASS CONTAMINATED WITH MERCURY SILVER DUST IGNITRON TUBES SODIUM AMALGAM LIGHTING/LIGHTING WASTES SOILS CONTAMINATED WITH MERCURY MANOMETERS CONTAINING MERCURY SWITCHES (containing Mercury) MERCURIC OXIDE POWDER/PELLETS TELEPHONE SWITCHES MERCURIC OXIDE FLOOR SWEEPINGS THERMOCOUPLES MERCURIC OXIDE BATTERIES THERMOMETERS (containing Mercury) MERCURY COMPOUNDS THERMOSTATS (containing Mercury) MERCURY CONTAMINATED MATERIALS VAPOR LAMPS (containing Mercury) MERCURY CONTAMINATED METALS ZINC AMALGAM MERCURY SOLUTIONS MERCURY RELAYS MERCURY COMPOUNDS AND SOLUTIONS MERCURY COMPOUNDS 4-aminophenylmercuric acetate mercury acetate) chloranilic acid (mercury II) mercurous bromide (mercury I bromide) dibenzyl mercury mercurous carbonate ethyl mercuric acetate mercurous chloride (calomel, mercury I ethyl mercuric phosphate chloride, mercury monochloride) ethyl mercury (p-toluene suloanilide) mercurous fluoride fluorescein mercuric acetate mercurous iodide harris alum hematoxylin mercurous gluconate (mercury I gluconate) mercuric acetate (bisacetyloxy mercury, mercurous nitrate (mercury I nitrate) diacetoxymercury, mercury diactate, mercurous nitrate mercury II acetate) mercurous oxide (mercury I oxide) mercuric benzene sulfonic acid mercurous sulfate (mercury I sulfate) mercuric benzoate (mercury II benzoate) mercury phosphate mercuric bromate mercury monohlycinate mercuric bromide (mercury II bromide) mercury sulfide mercuric carbonate mercury tetravanadate mercuric chlorate mercury thiocyanate mercuric chloride (corrosive sublimate, mercury trifluoracetatel bichloride of mercury, merthiolate solution (thimersol, mercuric cyclohexane butyrate thiomersalate, SET, elicide, merfamin, mercuric dinapthylmethane disulphonate o-ethylmercurithio benzoic acid, mercuric fluorate sodium salt) mercuric iodate methoxy ethyl mercuric acetate mercuric iodide N-phenylmercuriethylene diamine mercuric isocyanate p-(acetoxymercuric) aniline mercuric lactate (mercury II lactate) p-hydroxy mercuricbenzoate mercuric nitrate (mercury II nitrate, phenylmercuric acetate mercuric oleate (mercury oleate) phenylmercuric benzoate mercuric oxide (red oxide of mercury, yellow phenylmercuric bromide oxide of mercury, mercury II oxide) phenylmercuric chloride mercuric oxybromide phenylmercuric dimethylothiocarbamate mercuric oxychloride phenylmercuric dodecyl succinate mercuric oxyfluoride phenylmercuric hydroxide mercuric oxyiodide phenylmercuric iodide mercuric phenyl mercaptide phenylmercuric nitrate mercuric potassium iodide phenylmercuric oxalate mercuric salicylate phenylmercuric oxide mercuric succinimide phenylmrcury phosphate mercuric sulfate (mercury II, sulfate, mercury pyridyl mercuric acetate persulfate, mercury bisulfate) sodium ethymercurithiosalicylate mercuric sulfide mercuric thiocyanate MERCURY SOLUTIONS mercurol (mercury nucleate) acetates Nessler’s Reagent mercurophen bromides nitrates mercurophylline (mercupurin, mercuzanthin) carbonates nitric acid containing mercury mercurous acetate (mercury monoacetate, chlorides nitrites COD test solutions oxalates.
Recommended publications
  • Experiments with the Ammonium Amalgam
    Experiments with the Ammonium Amalgam. [from THE AM. JOURNAL OF SCIENCE, VOL. XL, SEPT., 1865.] EXPERIMENTS WITH THE AMMONIUM AMALGAM, BY CHARLES M. WETHERILL, Ph.D., M.D. The existence of the hypothetical radical NH 4 depends less upon the characteristics of its so-called amalgam than! upon the parallelism of its salts with those of the alkalies. If, from these analogies, we accept the metallic nature of ammonium, it will be difficult to avoid assigning a similar character to the rad- icals of all of the organic bases; and especially to those which, like the compound /ammonias, have an alkaline reaction and possess physical and chemical properties so like ammonia. If such be the inference, we must admit numerous compound metals exists only in certain of , which states of combination their elements. The assumption of the elementary nature of a metal is destroyed and the ideas of the alchemists are re- ; a may vived for if NH 4 be metal and NH 3 be not one, why not other metals, esteemed elements, be also compounds. In examining the so-called ammonium amalgam one is inter- ested at the great resemblance which it bears to the amalgams proper in its physical properties. The mercury has lost its flu- idity or mobility, and, at the same time, its relations of cohesion and adhesion are very sensibly altered. It no longer coheres powerfully; but adheres to, or Wets, platinum, iron and other metals, like the potassium or sodium amalgam. When left to C. M. Wetherill—Experiments with Ammonium Amalgam. 3 itself, the swollen mass shrinks, and gradually resolves itself into NH 3(NH 0) H and Hg, because (as it is usually explained) NH 4 has 4 a great tendency to fall apart into NH 3 and H.
    [Show full text]
  • 1 Submission from the EU on Mercury-Added Products And
    Submission from the EU on mercury-added products and manufacturing processes using mercury or mercury compounds In accordance with Decision MC-3/16: Review of Annexes A and B, the Secretariat called in a letter dated 13 December (MC/COP3/2019/15) for submissions from Parties by 31 March 2020, including: a) Information on mercury-added products and on the availability, technical and economic feasibility, and environmental and health risks and benefits of non-mercury alternatives to mercury-added products, pursuant to paragraph 4 of article 4 of the Convention b) Information on processes that use mercury or mercury compounds and on the availability, technical and economic feasibility and environmental and health risks and benefits of mercury-free alternatives to manufacturing processes in which mercury or mercury compounds are used, pursuant to paragraph 4 of article 5 of the Convention The EU would like to share the information on a number of products and processes listed in table 1 below, where EU law is stricter than the provisions of the Convention. Each product/process is covered in an individual fiche, including data sources and references. The submission also includes a fiche on re-emerging use of mercury used as propellant in ion engines. New information has surfaced regarding this specific use which is likely to cause a significant dispersion of mercury to the environment. Note that the EU submission is based on the European Commission study on the "Collection of information on mercury-added products and their alternatives". The final report has a wider scope than the EU submission as it also covers a number of other existing or emerging uses and has been published and made available on CIRCABC.
    [Show full text]
  • Mercury and Mercury Compounds
    United States Office of Air Quality EPA-454/R-97-012 Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 December 1997 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF MERCURY AND MERCURY COMPOUNDS L & E EPA-454/R-97-012 Locating And Estimating Air Emissions From Sources of Mercury and Mercury Compounds Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 December 1997 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. EPA-454/R-97-012 TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY ................................................ xi 1.0 PURPOSE OF DOCUMENT .............................................. 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS ................................. 2-1 3.0 BACKGROUND ........................................................ 3-1 3.1 NATURE OF THE POLLUTANT ..................................... 3-1 3.2 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ................. 3-1 3.2.1 Production .................................................. 3-1 3.2.2 End-Use .................................................... 3-3 3.2.3 Emissions ................................................... 3-6 4.0 EMISSIONS FROM MERCURY PRODUCTION ............................. 4-1 4.1 PRIMARY MERCURY
    [Show full text]
  • Paper Mills 553 ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
    DRAFT WISCONSIN MERCURY SOURCEBOOK: PAPER MILLS 553 ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ MERCURY USE: Table of Contents About This Handout ............................ 554 PAPER MILLS Why Should I Be Concerned About Mercury? .............................................. 555 Keeping Mercury Out of Wastewater ... 557 Mercury is Potentially Used or Released at 1 A Component in Equipment ............. 558 Paper Mills in Four Different Areas: Mercury Product Focus: Batteries ..... 558 Mercury Product Focus: Detergents & 1 A component in equipment (e.g., switches, gauges, thermometers) Cleaners ............................................... 560 Mercury Product Focus: Gauges - 2 An ingredient in chemicals or laboratory chemicals (e.g., thimerosal) Manometers, Barometers, and Vacuum Gauges ................................................. 561 3 A contaminant in raw materials (eg., caustic soda) Mercury Product Focus: Lamps ........ 561 Mercury Product Focus: Switches and 4 An incidental release due to a production process (eg., coal Relays ................................................... 563 combustion) Mercury Switches in Electrical Applications ......................................... 564 Mercury Product Focus: Thermometers ...................................... 565 Where Would These Products or Processes Be Mercury Product Focus: Thermo-Electric Found in a Paper Mill? Devices ................................................. 565 Mercury Product Focus: Thermostat Mercury-containing instruments and devices are potentially
    [Show full text]
  • Been Regarded As a Distinguishing Characteristic of Electrolytic Con
    634 CHEMISTRY: LEWIS AND HWIVE ELECTRICAL CONDUCTION IN DILUTE AMALGAMS By Gilbert N. Lewis and Thomas B. Hine DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CALIFORNIA Reeived by the Academy. October 17.1916 The modem theory of electrical conduction in metals, according to which the metal is dissociated to give a positive ion of low mobility, which is characteristic of the metal, and a negative carrier of high mo- bility, which is common to all metals and presumably to be identified with the electron, has given rise to certain misgivings, despite the com- plete analogy between this theory and the accepted theory of electro- lytic dissociation. It is true that in the case of solid metals the crystal- line forces, which lead to the formation of the various components of the metal into symmetrical space-lattices, produce conditions which have no counterpart in liquid electrolytes, but in the case of a liquid metal like mercury we must assume that it differs from any electrolyte -we are tempted to say from any other electrolyte-only in as far as one of its ions has properties which differ very greatly in degree, but probably not in kind, from the properties of other ions. If therefore we should ultimately find that the Arrhenius theory of ionization is not applicable to a liquid metal we should be inclined to believe that it is not completely valid in the case of electrolytes. This theory of electrolytic dissociation, which was originally pro- posed to explain the properties of aqueous salt solutions, has since been successfully applied without essential modification to many types of non-aqueous solution.
    [Show full text]
  • Alkali Or Alkaline -Earth Metals
    28.05 28.05 - Alkali or alkaline-earth metals; rare-earth metals, scandium and yttrium, whether or not intermixed or interalloyed; mercury. - Alkali or alkaline-earth metals : 2805.11 - - Sodium 2805.12 - - Calcium 2805.19 - - Other 2805.30 - Rare-earth metals, scandium and yttrium whether or not intermixed or interalloyed 2805.40 - Mercury (A) ALKALI METALS The five alkali metals are soft and rather light. They decompose cold water; they deteriorate in air, forming hydroxides. (1) Lithium. This is the lightest (specific gravity 0.54) and hardest of the group. It is kept in mineral oil or inert gases. Lithium helps to improve the qualities of metals, and is used in various alloys (e.g., anti-friction alloys). Because of its great affinity for other elements, it is also used, inter alia, to obtain other metals in the pure state. (2) Sodium. A solid (specific gravity 0.97) with a metallic lustre, readily tarnishing after cutting. It is preserved in mineral oil or in airtight welded tins. Sodium is obtained by electrolysing molten sodium chloride or sodium hydroxide. It is used in the manufacture of sodium peroxide (“ dioxide ”), sodium cyanide, sodamide, etc., the indigo industry, the manufacture of explosives (chemical primers and fuses), the polymerisation of butadiene, anti-friction alloys, or titanium or zirconium metallurgy. The heading excludes sodium amalgam (heading 28.53). (3) Potassium. A silvery-white metal (specific gravity 0.85), which can be cut with an ordinary knife. It is preserved in mineral oil or in sealed ampoules. Potassium is used for the preparation of certain photoelectric cells, and in anti-friction alloys.
    [Show full text]
  • Further Information on the Mercury Cell
    Further information on the mercury cell Here is some further information to assist you. The anode reaction involves chloride ion being converted to chorine gas. Mercury flows over the steel base of the cell and, in this way, the mercury acts as the cathode. Sodium is released in preference to hydrogen on the mercury surface, the sodium dissolving in the mercury. This is then carried into the secondary cell where it reacts with water to release sodium hydroxide. In the secondary reactor, the sodium amalgam reacts with water to produce sodium hydroxide and hydrogen. Write the equation for this reaction. To increase the rate of this reaction, the secondary reactor contains carbon balls, which catalyse the reaction. The sodium hydroxide is produced at up to 50% concentration. This is the sales specification and therefore no further purification is required. Additionally, the amount of sodium chloride produced is low at 30 ppm, making the mercury cell a highly effective means of producing sodium hydroxide. Further information on the diaphragm cell Here is some further information to assist you. The anode reaction involves chloride ion being converted to chlorine gas, while, at the cathode, hydrogen is released. The porous diaphragm is a means of separating chlorine liberated at the anode from sodium hydroxide and hydrogen produced at the cathode. Due to a hydraulic gradient, it prevents the reverse flow of hydroxyl ions formed in cathode section from passing into the anode section where they can react to form sodium hypochlorite (NaClO) and sodium chlorate (NaClO3). Due to reactions described in the section on The problem with electrolysis, sodium hypochlorite, sodium chlorate and oxygen are formed as bi-products in a commercial cell.
    [Show full text]
  • Hyponitrites ; Their Properties, and Their Pre- Paration by Sodium Or Potassium
    View Article Online / Journal Homepage / Table of Contents for this issue DIVERS : HYPONITRfTES ; THEfR PROPERTfES, ETC. $5 XV.-Hyponitrites ; their Properties, and their Pre- paration by Sodium or Potassium. Published on 01 January 1899. Downloaded by Heinrich Heine University of Duesseldorf 12/11/2013 22:18:32. By EDWARDDIVERS, M.D.; D.Sc., F.R.8. THE hyponitrites have received the attention of many chemists besides myself since their discovery in 1871, and even this year new ways of forming them and the new working of an old method have been published, Yet much has been left to be put on record before a fairly correct and full history of these salts can be said to have been given, and the present paper is meant to be the necessary supplement to what has already been published. Way8 fmming Hyponitrites. No writer on hyponitrites in recent years has ahown himself acquainted with all the known ways of getting these salts, or even with the most productive. The following complete list is valuable, H2 View Article Online 96 DIVERS : HYPONITRITES ; THEIR PROPERTIES, AND THEIR therefore, and is of special interest as bringing togehr the various modes of formation of these salts. 1, Reduction of an alkali nitrite by the amalgam of its metal (Divers, 1871). 2. Reduction of an alkali nitrite by ferrous hydroxide (Zorn, 1882 ; Dunstap and Dymond). 3. Reduction of (hypo)nitrososulphates by sodium amalgam (Divers and Haga, 1885). 4. Reduction of nitric oxide by alkali stannite (Divers and Hagn, 1885). 5. Reduction of nitric oxide by ferrous hydroxide (Dunstan and Dymond, 1887).
    [Show full text]
  • Rpt POL-TOXIC AIR POLLUTANTS 98 BY
    SWCAA TOXIC AIR POLLUTANTS '98 by CAS ASIL TAP SQER CAS No HAP POLLUTANT NAME HAP CAT 24hr ug/m3 Ann ug/m3 Class lbs/yr lbs/hr none17 BN 1750 0.20 ALUMINUM compounds none0.00023 AY None None ARSENIC compounds (E649418) ARSENIC COMPOUNDS none0.12 AY 20 None BENZENE, TOLUENE, ETHYLBENZENE, XYLENES BENZENE none0.12 AY 20 None BTEX BENZENE none0.000083 AY None None CHROMIUM (VI) compounds CHROMIUM COMPOUN none0.000083 AY None None CHROMIUM compounds (E649962) CHROMIUM COMPOUN none0.0016 AY 0.5 None COKE OVEN COMPOUNDS (E649830) - CAA 112B COKE OVEN EMISSIONS none3.3 BN 175 0.02 COPPER compounds none0.67 BN 175 0.02 COTTON DUST (raw) none17 BY 1,750 0.20 CYANIDE compounds CYANIDE COMPOUNDS none33 BN 5,250 0.60 FIBROUS GLASS DUST none33 BY 5,250 0.60 FINE MINERAL FIBERS FINE MINERAL FIBERS none8.3 BN 175 0.20 FLUORIDES, as F, containing fluoride, NOS none0.00000003 AY None None FURANS, NITRO- DIOXINS/FURANS none5900 BY 43,748 5.0 HEXANE, other isomers none3.3 BN 175 0.02 IRON SALTS, soluble as Fe none00 AN None None ISOPROPYL OILS none0.5 AY None None LEAD compounds (E650002) LEAD COMPOUNDS none0.4 BY 175 0.02 MANGANESE compounds (E650010) MANGANESE COMPOU none0.33 BY 175 0.02 MERCURY compounds (E650028) MERCURY COMPOUND none33 BY 5,250 0.60 MINERAL FIBERS ((fine), incl glass, glass wool, rock wool, slag w FINE MINERAL FIBERS none0.0021 AY 0.5 None NICKEL 59 (NY059280) NICKEL COMPOUNDS none0.0021 AY 0.5 None NICKEL compounds (E650036) NICKEL COMPOUNDS none0.00000003 AY None None NITROFURANS (nitrofurans furazolidone) DIOXINS/FURANS none0.0013
    [Show full text]
  • FOI 161-112 Document 1
    \/ Fw: IDC - Mercury L fy [SEC=:UNCLASSIFIED] 09/12/2010 04:23 PM - This is the fi rst of two emails I will send - this is our response to the questions posed by the UNEP f""I secretariat after the first in June. INC ...., C Kind regards, QJ E :::l ..*******��***************�************ u o International Coordination Team c Office of Parliamentary and Strategic Support Therapeutic Goods Administration E-mail: [email protected] ----- Forwarded n 09/12/20"10 04:21 PM ---_. To 'ilenvironmentgov,au> · cc !ilenvironment.gov,au>, environment.gov,au>_ "" 11/11/2010 .. .. 02:14 PM Subject Re: IDC - Mercury LBI- Friday 23 July [SEC=UNCLASSIFIED} Dear_ Please find attached TGA's contribution to the mercury data gaps identified by the UNEP Secretariat. Should you have any queries or concerns relating to tllis information, we would be very happy to discuss these at our meeting tomorrow (Friday 12 November at 3pm), TGA participants at tomorrow's meeting will be: Devices Authorisation Office of Scientific Evaluation Services _ill also be there, representing the International Coordination team. Please note that we are correctly identified as stakeholders for the Regulation sector (arrangements for labelling products containing mercury), but mistakenly included as a stakeholder for the sector for uni ntentional emission (biomedical waste i Ilcineration), Kind regards, International Coordination Tearn Office of Parliamentary aild Strategic Support Therapeutic Goods Administration E�mail: [email protected] o - Mercury in ther�peutic products - Response for UNEP INC Oct 201 O.DOCX Dear Colleagues FOl owlng u� ercury �BI meeting on FridLY'23 July, we would li ke to t from t� �C � M request for )tell assl�� ce In addressing the mercury data gaps that the UNEP Secretariat has identified.
    [Show full text]
  • Military 501 ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
    DRAFT WISCONSIN MERCURY SOURCEBOOK: MILITARY 501 ▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼ MERCURY USE: MILITARY Table of Contents Keeping Mercury out of Wastewater .... 501 Mercury can potentially be used or released in a military setting in four About This Handout ............................ 502 different areas: Why Should I Be Concerned About Mercury? .............................................. 503 1 A component in equipment (e.g, thermometers, pressure sensing 1 A Component in Equipment ............. 505 devices, navigational equipment, seals, valves, or specialty products Mercury Product Focus: Batteries ..... 505 such as infrared sensors, semiconductors, security sensors ) Mercury Product Focus: Detergents & Cleaners ............................................... 507 2 An ingredient in chemicals or laboratory chemicals (e.g., Mercury Product Focus: Gauges - phenylmercuric acetate) Manometers, Barometers, and Vacuum Gauges ................................................. 508 3 A contaminant in raw materials (eg., manufacturing plants that use Mercury Product Focus: Lamps ........ 508 caustic soda) Mercury Product Focus: Semiconductors or Infrared Sensors ............................. 510 4 An incidental release due to a production process (eg., facilities that Mercury Product Focus: Switches and have on-site boilers) Relays ................................................... 510 Mercury Switches in Electrical Applications ......................................... 512 Mercury Product Focus: Thermo-Electric Devices ................................................
    [Show full text]
  • Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act
    Updated June 07, 2021 Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act Three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Risks • Category 3: Bulk Drug Substances Nominated Without Adequate Support Updates to Categories of Substances Nominated for the 503B Bulk Drug Substances List1 • Add the following entry to category 2 due to serious safety concerns of mutagenicity, cytotoxicity, and possible carcinogenicity when quinacrine hydrochloride is used for intrauterine administration for non- surgical female sterilization: 2,3 o Quinacrine Hydrochloride for intrauterine administration • Revision to category 1 for clarity: o Modify the entry for “Quinacrine Hydrochloride” to “Quinacrine Hydrochloride (except for intrauterine administration).” • Revision to category 1 to correct a substance name error: o Correct the error in the substance name “DHEA (dehydroepiandosterone)” to “DHEA (dehydroepiandrosterone).” 1 For the purposes of the substance names in the categories, hydrated forms of the substance are included in the scope of the substance name. 2 Quinacrine HCl was previously reviewed in 2016 as part of FDA’s consideration of this bulk drug substance for inclusion on the 503A Bulks List. As part of this review, the Division of Bone, Reproductive and Urologic Products (DBRUP), now the Division of Urology, Obstetrics and Gynecology (DUOG), evaluated the nomination of quinacrine for intrauterine administration for non-surgical female sterilization and recommended that quinacrine should not be included on the 503A Bulks List for this use. This recommendation was based on the lack of information on efficacy comparable to other available methods of female sterilization and serious safety concerns of mutagenicity, cytotoxicity and possible carcinogenicity in use of quinacrine for this indication and route of administration.
    [Show full text]