Clinical Practice Guideline—Febrile Seizures: Guideline for the Neurodiagnostic Evaluation of the Child with a Simple Febrile Seizure

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Practice Guideline—Febrile Seizures: Guideline for the Neurodiagnostic Evaluation of the Child with a Simple Febrile Seizure FROM THE AMERICAN ACADEMY OF PEDIATRICS Organizational Principles to Guide and Define the Child Health Care System and/or Improve the Health of all Children Clinical Practice Guideline—Febrile Seizures: Guideline for the Neurodiagnostic Evaluation of the Child With a Simple Febrile Seizure SUBCOMMITTEE ON FEBRILE SEIZURES KEY WORD abstract seizure OBJECTIVE: To formulate evidence-based recommendations for health ABBREVIATIONS care professionals about the diagnosis and evaluation of a simple AAP—American Academy of Pediatrics Hib—Haemophilus influenzae type b febrile seizure in infants and young children 6 through 60 months of EEG—electroencephalogram age and to revise the practice guideline published by the American CT—computed tomography Academy of Pediatrics (AAP) in 1996. The recommendations in this report do not indicate an exclusive METHODS: This review included search and analysis of the medical course of treatment or serve as a standard of medical care. Variations, taking into account individual circumstances, may be literature published since the last version of the guideline. Physicians appropriate. with expertise and experience in the fields of neurology and epilepsy, This document is copyrighted and is property of the American pediatrics, epidemiology, and research methodologies constituted a Academy of Pediatrics and its Board of Directors. All authors subcommittee of the AAP Steering Committee on Quality Improvement have filed conflict of interest statements with the American and Management. The steering committee and other groups within the Academy of Pediatrics. Any conflicts have been resolved through a process approved by the Board of Directors. The American AAP and organizations outside the AAP reviewed the guideline. The Academy of Pediatrics has neither solicited nor accepted any subcommittee member who reviewed the literature for the 1996 AAP commercial involvement in the development of the content of practice guidelines searched for articles published since the last this publication. guideline through 2009, supplemented by articles submitted by other committee members. Results from the literature search were provided to the subcommittee members for review. Interventions of direct inter- est included lumbar puncture, electroencephalography, blood studies, and neuroimaging. Multiple issues were raised and discussed itera- tively until consensus was reached about recommendations. The strength of evidence supporting each recommendation and the strength of the recommendation were assessed by the committee member most experienced in informatics and epidemiology and graded according to AAP policy. www.pediatrics.org/cgi/doi/10.1542/peds.2010-3318 doi:10.1542/peds.2010-3318 CONCLUSIONS: Clinicians evaluating infants or young children after a simple febrile seizure should direct their attention toward identifying All clinical practice guidelines from the American Academy of Pediatrics automatically expire 5 years after publication unless the cause of the child’s fever. Meningitis should be considered in the reaffirmed, revised, or retired at or before that time. differential diagnosis for any febrile child, and lumbar puncture should PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). be performed if there are clinical signs or symptoms of concern. For Copyright © 2011 by the American Academy of Pediatrics any infant between 6 and 12 months of age who presents with a seizure and fever, a lumbar puncture is an option when the child is considered deficient in Haemophilus influenzae type b (Hib) or Streptococcus pneumoniae immunizations (ie, has not received scheduled immuniza- tions as recommended), or when immunization status cannot be de- termined, because of an increased risk of bacterial meningitis. A lum- bar puncture is an option for children who are pretreated with antibiotics. In general, a simple febrile seizure does not usually require further evaluation, specifically electroencephalography, blood studies, or neuroimaging. Pediatrics 2011;127:389–394 PEDIATRICS Volume 127, Number 2, February 2011 389 Downloaded from www.aappublications.org/news by guest on October 1, 2021 DEFINITION OF THE PROBLEM simple febrile seizure was shown to be tee on Quality Improvement and Manage- This practice guideline provides recom- only slightly higher than that of the gen- ment; members of the AAP Section on Ad- mendations for the neurodiagnostic eral population, whereas the chief risk ministration and Practice Management, evaluation of neurologically healthy in- associated with simple febrile seizures Section on Developmental and Behav- fants and children 6 through 60 months was recurrence in one-third of the chil- ioral Pediatrics, Section on Epidemiol- of age who have had a simple febrile sei- dren. The authors concluded that simple ogy, Section on Infectious Diseases, Sec- zure and present for evaluation within 12 febrile seizures are benign events with tion on Neurology, Section on Neurologic hours of the event. It replaces the 1996 excellent prognoses, a conclusion reaf- Surgery, Section on Pediatric Emergency practice parameter.1 This practice firmed in the 1980 consensus statement Medicine, Committee on Pediatric Emer- guideline is not intended for patients from the National Institutes of Health.3,4 gency Medicine, Committee on Practice who have had complex febrile seizures The expected outcomes of this practice and Ambulatory Medicine, Committee on (prolonged, focal, and/or recurrent), guideline include the following: Child Health Financing, Committee on In- and it does not pertain to children with fectious Diseases, Committee on Medical 1. Optimize clinician understanding of previous neurologic insults, known cen- Liability and Risk Management, Council the scientific basis for the neurodi- tral nervous system abnormalities, or on Children With Disabilities, and Council agnostic evaluation of children with history of afebrile seizures. on Community Pediatrics; and members simple febrile seizures. of outside organizations including the TARGET AUDIENCE AND PRACTICE 2. Aid the clinician in decision-making Child Neurology Society, the American SETTING by using a structured framework. Academy of Neurology, the American Col- This practice guideline is intended for 3. Optimize evaluation of the child who lege of Emergency Physicians, and mem- use by pediatricians, family physicians, has had a simple febrile seizure by bers of the Pediatric Committee of the child neurologists, neurologists, emer- detecting underlying diseases, min- Emergency Nurses Association. gency physicians, nurse practitioners, imizing morbidity, and reassuring A comprehensive review of the evidence- and other health care providers who anxious parents and children. based literature published from 1996 to evaluate children for febrile seizures. 4. Reduce the costs of physician and February 2009 was conducted to dis- BACKGROUND emergency department visits, hospi- cover articles that addressed the diag- talizations, and unnecessary testing. nosis and evaluation of children with A febrile seizure is a seizure accompa- simple febrile seizures. Preference was nied by fever (temperature Ն 100.4°F or 5. Educate the clinician to understand that a simple febrile seizure usually given to population-based studies, but 38°C2 by any method), without central given the scarcity of such studies, data nervous system infection, that occurs in does not require further evaluation, from hospital-based studies, groups of infants and children 6 through 60 specifically electroencephalography, young children with febrile illness, and months of age. Febrile seizures occur in blood studies, or neuroimaging. comparable groups were reviewed. 2% to 5% of all children and, as such, METHODOLOGY Decisions were made on the basis of a make up the most common convulsive systematic grading of the quality of evi- event in children younger than 60 To update the clinical practice guideline dence and strength of recommendations. months. In 1976, Nelson and Ellenberg,3 on the neurodiagnostic evaluation of 1 using data from the National Collabora- children with simple febrile seizures,1 In the original practice parameter, 203 tive Perinatal Project, further defined fe- the American Academy of Pediatrics medical journal articles were reviewed brile seizures as being either simple or (AAP) reconvened the Subcommittee on and abstracted. An additional 372 arti- complex. Simple febrile seizures were Febrile Seizures. The committee was cles were reviewed and abstracted for defined as primary generalized seizures chaired by a child neurologist and con- this update. Emphasis was placed on ar- that lasted for less than 15 minutes and sisted of a neuroepidemiologist, 3 addi- ticles that differentiated simple febrile did not recur within 24 hours. Complex tional child neurologists, and a practic- seizures from other types of seizures. Ta- febrile seizures were defined as focal, ing pediatrician. All panel members bles were constructed from the 70 arti- prolonged (Ն15 minutes), and/or recur- reviewed and signed the AAP voluntary cles that best fit these criteria. rent within 24 hours. Children who had disclosure and conflict-of-interest form. The evidence-based approach to guide- simple febrile seizures had no evidence No conflicts were reported. Participation line development requires that the evi- of increased mortality, hemiplegia, or in the guideline process was voluntary dence in support of a recommendation mental retardation. During follow-up and not paid. The guideline was reviewed be identified,
Recommended publications
  • The Genetic Relationship Between Paroxysmal Movement Disorders and Epilepsy
    Review article pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(3):76-87 https://doi.org/10.26815/acn.2020.00073 The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy Hyunji Ahn, MD, Tae-Sung Ko, MD Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea Received: May 1, 2020 Revised: May 12, 2020 Seizures and movement disorders both involve abnormal movements and are often difficult to Accepted: May 24, 2020 distinguish due to their overlapping phenomenology and possible etiological commonalities. Par- oxysmal movement disorders, which include three paroxysmal dyskinesia syndromes (paroxysmal Corresponding author: kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dys- Tae-Sung Ko, MD kinesia), hemiplegic migraine, and episodic ataxia, are important examples of conditions where Department of Pediatrics, Asan movement disorders and seizures overlap. Recently, many articles describing genes associated Medical Center Children’s Hospital, University of Ulsan College of with paroxysmal movement disorders and epilepsy have been published, providing much infor- Medicine, 88 Olympic-ro 43-gil, mation about their molecular pathology. In this review, we summarize the main genetic disorders Songpa-gu, Seoul 05505, Korea that results in co-occurrence of epilepsy and paroxysmal movement disorders, with a presenta- Tel: +82-2-3010-3390 tion of their genetic characteristics, suspected pathogenic mechanisms, and detailed descriptions Fax: +82-2-473-3725 of paroxysmal movement disorders and seizure types. E-mail: [email protected] Keywords: Dyskinesias; Movement disorders; Seizures; Epilepsy Introduction ies, and paroxysmal dyskinesias [3,4]. Paroxysmal dyskinesias are an important disease paradigm asso- Movement disorders often arise from the basal ganglia nuclei or ciated with overlapping movement disorders and seizures [5].
    [Show full text]
  • The Frequency of Seizures with Roseola. the Study Corroborates the Suggestion That Seizures with Roseola, HHV-6, and Fever Are Not Always Simple in Type
    the frequency of seizures with roseola. The study corroborates the suggestion that seizures with roseola, HHV-6, and fever are not always simple in type. They are frequently prolonged, recurrent, and complex, and sometimes a manifestation of encephalitis or encephalopathy. (Progress in Pediatric Neurology II. Millichap JG, Ed, PNB Publ, 1994, pp 410, 415). These findings further weaken the hypothesis of the so-called simple febrile seizure as a distinct disease entity. For abstracts from the 16th annual conference on febrile convulsions held in Tokyo, Dec 18, 1993, see Fukuyama Y. Brain Dev July/Aug 1994;16:339-346. Papers included neurochemical aspects, EEG studies, and clinical, epidemiological, and treatment reports. The reputed safety and effectiveness of intermittent oral diazepam (0.4 mg/kg, 3 doses) at times of fever for prevention of recurrence of febrile seizures was supported in 23 children treated at Shimane Medical University and Central Hospital, Japan. GLUTAMATE IN PYRIDOXINE-DEPENDENT EPILEPSY Cerebrospinal fluid levels of glutamate, g-aminobutyric acid, and pyridoxal-5-phosphate examined in a patient with pyridoxine dependency while on and off vitamin B6 treatment are reported from Universitat Munchen, and Universitats-Nervenklinik, Wurzburg, Germany. Seizures began at age 3 weeks. Despite phenobarbital, status epilepticus occurred at 3 months and was followed by infantile spasms and hypsarrhythmia. The addition of ACTH and vitamin B6 controlled the seizures and the EEG became normal. Seizures recurred on each of several occasions when vitamin B6 was withdrawn. CSF glutamate was elevated 200-fold, whereas GABA and PLP were normal. After vitamin B6 (5 mg/kg BW/day) was reintroduced, seizures stopped and the EEG was normal, but CSF glutamate was still elevated 10 fold.
    [Show full text]
  • Febrile Seizures: Clinical Practice Guideline for the Long-Term Management of the Child with Simple Febrile Seizures
    CLINICAL PRACTICE GUIDELINE Febrile Seizures: Clinical Practice Guideline for the Long-term Management of the Child With Simple Febrile Seizures Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures ABSTRACT Febrile seizures are the most common seizure disorder in childhood, affecting 2% to 5% of children between the ages of 6 and 60 months. Simple febrile seizures are www.pediatrics.org/cgi/doi/10.1542/ peds.2008-0939 defined as brief (Ͻ15-minute) generalized seizures that occur once during a 24-hour period in a febrile child who does not have an intracranial infection, doi:10.1542/peds.2008-0939 metabolic disturbance, or history of afebrile seizures. This guideline (a revision of All clinical reports from the American Academy of Pediatrics automatically expire the 1999 American Academy of Pediatrics practice parameter [now termed clinical 5 years after publication unless reaffirmed, practice guideline] “The Long-term Treatment of the Child With Simple Febrile revised, or retired at or before that time. Seizures”) addresses the risks and benefits of both continuous and intermittent The guidance in this report does not anticonvulsant therapy as well as the use of antipyretics in children with simple indicate an exclusive course of treatment febrile seizures. It is designed to assist pediatricians by providing an analytic or serve as a standard of medical care. Variations, taking into account individual framework for decisions regarding possible therapeutic interventions in this pa- circumstances, may be appropriate. tient population. It is not intended to replace clinical judgment or to establish a Key Word protocol for all patients with this disorder.
    [Show full text]
  • Chloride Channelopathies Rosa Planells-Cases, Thomas J
    Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch To cite this version: Rosa Planells-Cases, Thomas J. Jentsch. Chloride channelopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2009, 1792 (3), pp.173. 10.1016/j.bbadis.2009.02.002. hal- 00501604 HAL Id: hal-00501604 https://hal.archives-ouvertes.fr/hal-00501604 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch PII: S0925-4439(09)00036-2 DOI: doi:10.1016/j.bbadis.2009.02.002 Reference: BBADIS 62931 To appear in: BBA - Molecular Basis of Disease Received date: 23 December 2008 Revised date: 1 February 2009 Accepted date: 3 February 2009 Please cite this article as: Rosa Planells-Cases, Thomas J. Jentsch, Chloride chan- nelopathies, BBA - Molecular Basis of Disease (2009), doi:10.1016/j.bbadis.2009.02.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Pediatrics and Neonatology (2014) 55, 161e167 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.pediatr-neonatol.com REVIEW ARTICLE Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus Kuang-Lin Lin, Huei-Shyong Wang* Division of Pediatric Neurology, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan Received Mar 11, 2013; received in revised form Jul 3, 2013; accepted Jul 16, 2013 Available online 16 September 2013 Key Words Status epilepticus in childhood is more common, with a different range of causes and a lower status epilepticus; risk of death, than convulsive status epilepticus in adults. Acute central nervous system infec- childhood; tions appear to be markers for morbidity and mortality. Nevertheless, central nervous infec- encephalitis; tion is usually presumed in these conditions. Many aspects of the pathogenesis of acute antineuronal encephalitis and acute febrile encephalopathy with status epilepticus have been clarified in antibodies the past decade. The pathogenesis is divided into direct pathogens invasion or immune- mediated mechanisms. Over the past few decades, the number of antineuronal antibodies to ion channels, receptors, and other synaptic proteins described in association with central nervous system disorders has increased dramatically, especially
    [Show full text]
  • C1 PAGE.Indd
    Neurology.org/N Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Editors John J. Millichap, MD Att ending Epileptologist Ann & Robert H. Lurie Children’s Hospital of Chicago Associate Professor of Pediatrics and Neurology Northwestern University Feinberg School of Medicine Chicago, IL Jonathan W. Mink, MD, PhD Frederick A. Horner, MD Endowed Professor in Pediatric Neurology Professor of Neurology, Neuroscience, and Pediatrics Chief, Division of Child Neurology Vice Chair, Department of Neurology University of Rochester Medical Center Rochester, NY Phillip L. Pearl, MD Director of Epilepsy and Clinical Neurophysiology William G. Lennox Chair, Boston Children’s Hospital Professor of Neurology Harvard Medical School Boston, MA Roy E. Strowd III, MEd, MD Assistant Professor Neurology and Oncology Wake Forest School of Medicine Winston Salem, NC © 2019 American Academy of Neurology. All rights reserved. All articles have been published in Neurology®. Opinions expressed by the authors are not necessarily those of the American Academy of Neurology, its affi liates, or of the Publisher. Th e American Academy of Neurology, its affi liates, and the Publisher disclaim any liability to any party for the accuracy, completeness, effi cacy, or availability of the material contained in this publication (including drug dosages) or for any damages arising out of the use or non-use of any of the material contained in this publication. TABLE OF CONTENTS Neurology.org/N Section 2. Pediatric stroke and cerebrovascular disorders 25 Introduction Robert Hurford, Laura L. Lehman, Behnam Sabayan, and Mitchell S.V.
    [Show full text]
  • Pepid Pediatric Emergency Medicine Clinical Topics
    PEPID PEDIATRIC EMERGENCY MEDICINE CLINICAL TOPICS NEONATOLOGY • CEPHAL HEMATOMA • CYSTIC FIBROSIS • ABDOMINAL AND CHEST WALL • CEREBRAL PALSY • CYTOMEGALOVIRUS (CMV) DEFECTS (NEONATE AND INFANT) • CHRONIC NEONATAL LUNG • DELAYED TRANSITION • ABNORMAL HEAD SHAPE DISEASE • DRUG EXPOSED INFANT • ABO-INCOMPATIBILITY • COMNGENITAL PARVOVIRUS B 19 • ERYTHROBLASTOSIS FETALIS • ACNE - INFANTILE • CONGENITAL CANDIDIASIS • EXAMINATION OF THE NEWBORN • ALIGILLE SYNDROME • CONGENITAL CATARACTS • EXCHANGE TRANSFUSION • AMBIGUOUS GENITALIA • CONGENITAL CMV • EYE MISALIGNMENT • AMNIOTIC FLUID ASPIRATION • CONGENITAL COXSACKIEVIRUS • FETAL HYDRONEPHROSIS • ANAL ATRESIA • CONGENITAL DYSERYTHROPOIETIC • FETOMATERNAL TRANSFUSION • ANEMIA - SEVERE AT BIRTH ANEMIA • FFEDS/FLUIDS - PRETERM • ANEMIA OF PREMATURITY • CONGENITAL EMPHYSEMA • FPIES(FOOD PROTEIN INDUCED • ANHYDRAMNIOS SEQUENCE • CONGENITAL GLAUCOMA ENTEROCOLITIES SYNDROME) • APGAR SCORE • CONGENITAL GOITER • GASTRO INTESTINAL REFLUX • APNEA OF PREMATURITY • CONGENITAL HEART BLOCK • GROUP B STREPTOCOCCUS • APT TEST • CONGENITAL HEPATIC FIBROSIS • HEMORRHAGIC DISEASE OF THE • ASPHYXIATING THORACIC DYSTRO- • CONGENITAL HEPATITIS B NEWBORN PHY (JEUNE SYNDROME) INFECTION • HEPATIC RUPTURE • ATELECTASIS • CONGENITAL HEPTITIS C • HIV • ATRIAL SEPTAL DEFECTS INFECTION • HYALINE MEMBRANE DISEASE • BARLOW MANEUVER • CONGENITAL HYDROCELE • HYDROCEPHALUS • BECKWITH-WIEDEMANN SYN- • CONGENITAL HYPOMYELINATING • HYDROPS FETALIS DROME • CONGENITAL HYPOTHYROIDISM • HYPOGLYCEMIA OF INFANCY • BENIGN FAMILIAL NEONATAL
    [Show full text]
  • The Immune System in Pediatric Seizures and Epilepsies
    TheChristian M. Korff,Immune MD, a Russell C. Dale, MD,System PhDb in Pediatric Seizures and Epilepsies abstract The relation between the immune system and epilepsy has been studied for a long time. Immune activation may precede or follow the appearance of seizures. Depending on the situation, the innate and acquired immunity may be involved to various degrees. The intense, ongoing research has opened encouraging management and therapeutic perspectives for a significant number of patients suffering from seizures. These include the use of various drugs and less conventional approaches with anti-inflammatory or immunomodulatory properties. Data for children remain scarce, however, and the practical implications of recent discoveries in the field remain to be identified formally. The aim of this review is to present current knowledge of the role of immunity in relation to seizures, with a particular emphasis on clinical data available in childhood. More specifically, various autoantibodies involved in autoimmune encephalitis and epilepsy and general pathophysiological hypotheses on the role of immunity in seizure genesis are discussed, specific epilepsy syndromes in which autoimmune a components have been studied are summarized, workup recommendations Pediatric Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland; and bThe Children’s Hospital at and therapeutic options are suggested, and finally, open questions and Westmead Clinical School, University of Sydney, Sydney, future needs are presented. New South Wales, Australia Drs Korff and Dale conceptualized and designed the study, drafted the initial manuscript, and approved 4 the final manuscript as submitted. The risk of new onset seizures is psoriasis. In some of these situations, DOI: https:// doi.
    [Show full text]
  • Possible Role of SCN4A Skeletal Muscle Mutation in Apnea During Seizure
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UCL Discovery Received: 20 November 2018 | Revised: 20 May 2019 | Accepted: 8 June 2019 DOI: 10.1002/epi4.12347 SHORT RESEARCH ARTICLE Possible role of SCN4A skeletal muscle mutation in apnea during seizure Dilşad Türkdoğan1 | Emma Matthews2 | Sunay Usluer3 | Aslı Gündoğdu4 | Kayıhan Uluç5 | Roope Mannikko2 | Michael G. Hanna2 | Sanjay M. Sisodiya6,7 | Hande S. Çağlayan4,8 1Medical Faculty, Department of Child Neurology, Marmara University, Istanbul, Abstract Turkey SCN4A gene mutations cause a number of neuromuscular phenotypes including my- 2Queen Square Centre for Neuromuscular otonia. A subset of infants with myotonia‐causing mutations experience severe life‐ Diseases, UCL Queen Square Institute of threatening episodic laryngospasm with apnea. We have recently identified similar Neurology, UCL and National Hospital for Neurology and Neurosurgery, London, UK SCN4A mutations in association with sudden infant death syndrome. Laryngospasm 3Formerly Affiliated with Department of has also been proposed as a contributory mechanism to some cases of sudden unex- Molecular Biology and Genetics, Boğaziçi pected death in epilepsy (SUDEP). We report an infant with EEG‐confirmed seizures University, Istanbul, Turkey and recurrent apneas. Whole‐exome sequencing identified a known pathogenic mu- 4Department of Molecular Biology and SCN4A Genetics, Boğaziçi University, Istanbul, tation in the gene that has been reported in several unrelated families with Turkey myotonic disorder.
    [Show full text]
  • Febrile Seizures Clinical Pathway Johns Hopkins All Children’S Hospital
    JOHNS HOPKINS ALL CHILDREN’S HOSPITAL Febrile Seizures Clinical Pathway Johns Hopkins All Children’s Hospital Febrile Seizures Clinical Pathway Table of Contents 1. Rationale 2. Simple Febrile Seizure a. Background b. Diagnosis c. Discharge Criteria 3. Complex Febrile Seizure a. Algorithm b. Background and Diagnosis c. Evaluation i. Imaging ii. EEG d. Treatment e. Disposition f. Summary of Recommendations for Complex Febrile Seizure g. Pathway to Home 4. References 5. Outcome measures Updated: December 2019 Owners: Leslie Carroll, MD; Lisa Odendal, MD This pathway is intended as a guide for physicians, physician assistants, nurse practitioners and other healthcare providers. It should be adapted to the care of specific patient based on the patient’s individualized circumstances and the practitioner’s professional judgment. 1 Johns Hopkins All Children's Hospital Febrile Seizure Clinical Pathway Rationale: This clinical pathway was developed by a consensus group of JHACH physicians and advanced practice providers to standardize the management of children presenting to the hospital with a febrile seizure. It addresses the following clinical questions or problems: 1. How to define simple and complex febrile seizures 2. Which patient’s presenting with febrile seizures are higher risk and how to evaluate them 3. When to consider a neurology consult 4. Which patients can be discharged home and when it is recommended to admit Simple Febrile Seizures Background Definition: A febrile seizure is defined as a patient age 6 months to 60 months with seizure and fever >38 degrees C or parental report of fever within 24 hours. Criteria for simple febrile seizures includes a generalized tonic-clonic seizure lasting less than 15 minutes without recurrence in 24 hours.
    [Show full text]
  • Genetics in Epilepsy
    Experimental Neurobiology Vol. 12, pages 71~80, December 2003 Genetics in Epilepsy Chang-Ho Yun1,* and Beom S. Jeon2 1Department of Neurology, College of Medicine, Inha University, Incheon 400-711, Korea, 2Department of Neurology, Seoul National University College of Medicine, Seoul 110-744, Korea ABSTRACT The importance of genetic contributions to the epilepsies is now well established. Mutations in over 70 genes now define biological pathways leading to the epilepsy. These mutations disrupt a very large spectrum of biologic function. Some of the in- herited errors alter the intrinisic ion channel properties directly responsible for neuronal hyperexcitability and others have impact on the brain development or cellular regulation. This paper reviews the pathogenic implications of the established genetic mutations and briefly mentioned the susceptible genes in hereditary or familial epilepsy syndrome. Key words: Genetic, epilepsy INTRODUCTION causing epilepsies. Once the abnormalities such as genes and their products are identified, it will lead Epilepsy affects more than 0.5% of the general to an understanding of how the alterations in indi- population and has a significant hereditary compo- vidual neuronal or neural network properties cause nent. Twin studies that report concordance rates epilepsy (Delgado-Escueta et al., 1994). Probably consistently higher in monozygotic (MZ) than in di- less than 1% of patients with epilepsy are found to zygotic (DZ) twins provides strong support for a ge- have a seizure disorder caused by a single gene netic role in epilepsy (Berkovic et al., 1998). Con- mutation. The vast majority of epilepsy cases are cordance rates ranged from 10.8% in MZ pairs with considered complex traits, a combination of environ- acquired brain injuries to 70% in those without these mental factors and multiple genetic influences.
    [Show full text]
  • A Thesis Submitted by Liliya Silayeva in Partial
    SEIZURES RAPIDLY IMPAIR PHOSPHORYLATION-DEPENDENT REGULATORY MECHANISMS OF KCC2 A thesis submitted by Liliya Silayeva In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience TUFTS UNIVERSITY Sackler School of Graduate Biomedical Sciences August 31, 2013 ADVISER: Stephen J. Moss i Pain is weakness leaving the body. It is a well known fact that it takes a village…this work is dedicated to the following village. ii ABSTRACT Status epilepticus, the development of prolonged or repetitive epileptiform activity without recovery in between, is a medical emergency. The vast majority of biomedical research applied to SE treatment has focused on targeting the GABAA receptor to promote neuronal inhibition. Little attention is given to the mechanism that establishes hyperpolarizing GABAA receptor currents in the adult brain. The K+-Cl– cotransporter KCC2 has been well established as the primary chloride extrusion mechanism in adult neurons that generates the low intracellular Cl– concentration necessary for fast synaptic inhibition. The major findings of this study are 1) phosphorylation of KCC2 at S940 is necessary for surviving kainate- induced SE, 2) phosphorylation of KCC2 at T906 contributes to the behavioral and electrographic seizures observed upon SE induction, and 3) phosphorylation of KCC2 at T906 may be mediated by Wnk3 kinase. These findings improve our understanding of the mechanisms underlying the development SE, which could in turn lead to novel therapeutic strategies for the treatment of this debilitating and deadly condition. iii ACKNOWLEDGEMENTS Steve. For putting my career in my hands. Seriously. Thanks. For not firing me once it became clear that curry was never going to be my thing.
    [Show full text]