Sudden Death After Febrile Seizure Case Report: Cerebral Suppression Precedes Severe Bradycardia Kenneth A

Total Page:16

File Type:pdf, Size:1020Kb

Sudden Death After Febrile Seizure Case Report: Cerebral Suppression Precedes Severe Bradycardia Kenneth A Sudden Death After Febrile Seizure CaseKenneth A. Myers, Report: MD, PhD, a, b Robyn E. McPherson, Cerebral MD, MSc, b Robin Clegg,Suppression MD,c Jeffrey Buchhalter, MD, PhD b Precedes Severe Bradycardiaabstract A 20-month-old girl with a complex chromosomal disorder had first presentation of febrile status epilepticus and was admitted to the hospital.‍ Two days after her initial seizure, she died suddenly and unexpectedly during a video EEG monitoring study.‍ An advanced analysis of the physiologic changes in the hours and minutes leading up to death was undertaken.‍ The electrocardiography over the last 19 minutes of life was reviewed, and the R-R aEpilepsy Research Centre, Austin Health, University of intervals were manually measured.‍ Heart rate variability was assessed through Melbourne, Melbourne, Victoria, Australia; and bDivision calculation of the SD of the R-R intervals and the root mean square of successive of Neurology and cSection of Cardiology, Department of Pediatrics, Alberta Children’s Hospital, University of differences over successive 100 beat periods.‍ Instantaneous heart rate, SD of Calgary, Calgary, Alberta, Canada the R-R intervals, the root mean square of successive differences, and oxygen saturation were plotted against time over the last 19 minutes of life.‍ Diffuse Dr Myers conceived the study, collected the data, prepared figures, and drafted the initial cerebral suppression on EEG was observed 10 minutes before death, followed manuscript; Dr McPherson assisted with data minutes later by severe bradycardia and increased heart rate variability.‍ collection and edited the manuscript; Dr Clegg Although the child did not meet criteria for a diagnosis of epilepsy, the sequence reviewed the electrocardiography recording and the patient’s cardiac history and edited the of physiologic changes leading up to death suggests a pathophysiology similar to manuscript; Dr Buchhalter reviewed the EEG sudden unexplained death in epilepsy.‍ A comparable pattern of diffuse cerebral recording and edited the manuscript; and all suppression preceding parasympathetic overactivity has been suggested in authors approved the final manuscript as submitted and agree to be accountable for all aspects of the some rare cases of adults who have experienced sudden unexplained death in work. epilepsy during video EEG monitoring.‍ DOI: https:// doi. org/ 10. 1542/ peds. 2016­ 2051 Accepted for publication Feb 23, 2017 Address correspondence to Kenneth A. Myers, MD, PhD, Epilepsy Research Centre, Melbourne Brain Febrile status epilepticus is defined 3reported in children than in adults, as a febrile seizure or series of febrile potentially because many adult risk Centre, Austin Health, 245 Burgundy St, Heidelberg, ≥ VIC 3084, Australia. E­mail: [email protected] seizures without intervening1 recovery factors are less relevant for young lasting 30 minutes.‍ Although children (eg, alcohol use, living alone, PEDIATRICS (ISSN Numbers: Print, 0031­4005; Online, febrile status is a medical emergency, poor adherence to medication).‍ 1098­4275). the mortality risk seems low.‍ The Copyright © 2017 by the American Academy of The current article presents the case of Pediatrics FEBSTAT (Consequences of Prolonged a young girl who died suddenly during FINANCIAL DISCLOSURE: The authors have Febrile Seizures in Childhood) study video EEG monitoring (VEM), days longitudinally followed up 119 children indicated they have no financial relationships after her first presentation with febrile relevant to this article to disclose. with febrile status epilepticus and status epilepticus.‍ We conducted an FUNDING: No external funding. reported 2 deaths, neither of 2which was advanced analysis of the physiologic related to prolonged seizure.‍ POTENTIAL CONFLICT OF INTEREST: The authors changes occurring in the hours and have indicated they have no potential conflicts of Death after a seizure is an important minutes before death.‍ interest to disclose. issue, as individuals with epilepsy have METHODS an increased risk of sudden death.‍ This To cite: Myers KA, McPherson RE, Clegg R, et al. phenomenon (ie, sudden unexpected Case Report Sudden Death After Febrile Seizure Case Report: death in epilepsy [SUDEP]) is a rare Cerebral Suppression Precedes Severe Brady­ ’ but tragic occurrence, with devastating cardia. Pediatrics. 2017;140(5):e20162051 effects on the individual s family A 20-month-old girl with a complicated and friends.‍ SUDEP is less commonly medical history underwent prolonged Downloaded from www.aappublications.org/news by guest on September 27, 2021 PEDIATRICS Volume 140, number 5, November 2017:e20162051 CASE REPORT Myers et al 2017 ROUGH GALLEY PROOF Sudden Death After Febrile Seizure Case https://doi.‍org/10.‍1542/peds.‍2016-2051 November 2017 Report: Cerebral Suppression Precedes Severe Bradycardia 5 140 Pediatrics RESULTS VEM during an admission after first girl was administered 2 L of 100% EEG presentation of convulsive febrile oxygen by nasal prongs and the status epilepticus’ .‍ dextrose infusion; serum electrolyte levels were normal that morning, For the majority of the VEM, the EEG The child s medical history was and glucose levels were normal showed diffuse, high-amplitude delta significant for a chromosomal throughout the day.‍ At 6.‍5 hours activity, with relative attenuation disorder involving distal monosomy into the recording, Code Blue was over the left hemisphere, consistent 9p, proximal monosomy 15q and – × called for cessation of breathing.‍ with a diffuse encephalopathy.‍ 16p13.‍11 duplication (arr(hg19) – Cardiopulmonary resuscitation was Frequent multifocal spikes were seen 9p24.‍3p23(204090 11371865) 1, ’ × briefly initiated but then stopped from the left frontal, right posterior 15q11.‍1q14(20686203 – per the family s wishes; the girl temporal, and left anterior temporal 39443222) 1, × subsequently died.‍ regions, suggesting a predisposition 16p13.‍11(14910213 Electrophysiologic Analysis for focal seizures from these regions.‍ 16194575) 3) and associated Occasional periods of diffuse dysmorphic features, bilateral attenuation lasting 2 to 5 seconds cleft palate, short webbed neck, During the VEM, electrocardiography were observed (Fig 1A), although congenital heart disease (mild (ECG) (lead I) and oxygen saturation the recording did not resemble burst valvular pulmonary stenosis and (finger sensor) were monitored.‍ suppression or hypsarrhythmia, trivial patent ductus arteriosus), and The EEG recording was reviewed patterns seen in some developmental severe bilateral bronchomalacia.‍ and the ECG tracing examined beat- epileptic encephalopathies.‍ She had a difficult medical by-beat, with each R-R interval course, experiencing respiratory manually measured and recorded No clinical or electrographic seizures insufficiency requiring ventilator over the 19 minutes leading up to were observed during 6.‍5 hours support, chronic hypoglycemia, and terminal asystole.‍ Instantaneous of VEM before death.‍ Ten minutes frequent infections, all of which heart rate (1/R-R interval) was before terminal asystole (T-10 had led to numerous prolonged calculated, as well as 2 heart rate minutes), there was an abrupt onset hospitalizations.‍ Neurologic variability measures (SD of the R-R of diffuse attenuation, which did not abnormalities included hypotonia interval [SDNN] and the root mean significantly improve (Fig 1B).‍ from birth and global developmental square of successive differences ECG delay.‍ An MRI of the brain as a [RMSSD]).‍ Increases in these heart neonate showed a simplified gyral rate variability (HRV) measures pattern, hypo-opercularization of were considered to represent a Single-lead ECG showed sinus rhythm the temporal lobes, and hypoplastic for the first 6 hours of recording, ’ shift toward parasympathetic over4 olfactory bulbs and tracts.‍ In sympathetic autonomic activity.‍ including up to the time of diffuse discussion with the child s family and Changes over time of SDNN and EEG suppression at T-10 minutes palliative care, a decision was made RMSSD were estimated by calculating (Fig 2A).‍ not to intubate or perform chest values for the 100 R-R intervals At T-8 minutes, profound sinus compressions in the event of acute surrounding each beat (50 intervals bradycardia was seen with deterioration.‍ before and 50 intervals after each ventricular escape beats (Fig 2B).‍ beat).‍ These values were plotted While in respite care, at 20 At T-7 minutes, ongoing ventricular against time, along with oxygen months of age, the child had her escape rhythm was established (Fig saturation values at 30-second first seizure (convulsive febrile 2C).‍ Sinus bradycardia was again intervals.‍ status epilepticus lasting 45 observed by T-4 minutes (Fig 2D).‍ minutes) and was admitted to the We did not measure PR, QRS, or QT The terminal rhythm was sinus hospital for treatment of vomiting intervals because such measurements bradycardia progressing to asystole.‍ and diarrhea associated with a differ when calculated from standard Heart rate was steady at 120 to 135 rotavirus infection.‍ A 50-minute 12-lead ECGs compared with single- beats/min until T-8 minutes, after 5 ∼ seizure occurred the next day, lead ECG recordings.‍ We attempted which the heart rate decreased and associated with hypoglycemia to assess the respiratory rate because plateaued at 70 beats/min (the (serum glucose level, 1.‍8 mmol/L), premorbid breathing abnormalities ventricular escape rate) (Fig 3).‍ and levetiracetam treatment was have been described6, 7 in previous SDNN
Recommended publications
  • The Genetic Relationship Between Paroxysmal Movement Disorders and Epilepsy
    Review article pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(3):76-87 https://doi.org/10.26815/acn.2020.00073 The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy Hyunji Ahn, MD, Tae-Sung Ko, MD Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea Received: May 1, 2020 Revised: May 12, 2020 Seizures and movement disorders both involve abnormal movements and are often difficult to Accepted: May 24, 2020 distinguish due to their overlapping phenomenology and possible etiological commonalities. Par- oxysmal movement disorders, which include three paroxysmal dyskinesia syndromes (paroxysmal Corresponding author: kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dys- Tae-Sung Ko, MD kinesia), hemiplegic migraine, and episodic ataxia, are important examples of conditions where Department of Pediatrics, Asan movement disorders and seizures overlap. Recently, many articles describing genes associated Medical Center Children’s Hospital, University of Ulsan College of with paroxysmal movement disorders and epilepsy have been published, providing much infor- Medicine, 88 Olympic-ro 43-gil, mation about their molecular pathology. In this review, we summarize the main genetic disorders Songpa-gu, Seoul 05505, Korea that results in co-occurrence of epilepsy and paroxysmal movement disorders, with a presenta- Tel: +82-2-3010-3390 tion of their genetic characteristics, suspected pathogenic mechanisms, and detailed descriptions Fax: +82-2-473-3725 of paroxysmal movement disorders and seizure types. E-mail: [email protected] Keywords: Dyskinesias; Movement disorders; Seizures; Epilepsy Introduction ies, and paroxysmal dyskinesias [3,4]. Paroxysmal dyskinesias are an important disease paradigm asso- Movement disorders often arise from the basal ganglia nuclei or ciated with overlapping movement disorders and seizures [5].
    [Show full text]
  • The Frequency of Seizures with Roseola. the Study Corroborates the Suggestion That Seizures with Roseola, HHV-6, and Fever Are Not Always Simple in Type
    the frequency of seizures with roseola. The study corroborates the suggestion that seizures with roseola, HHV-6, and fever are not always simple in type. They are frequently prolonged, recurrent, and complex, and sometimes a manifestation of encephalitis or encephalopathy. (Progress in Pediatric Neurology II. Millichap JG, Ed, PNB Publ, 1994, pp 410, 415). These findings further weaken the hypothesis of the so-called simple febrile seizure as a distinct disease entity. For abstracts from the 16th annual conference on febrile convulsions held in Tokyo, Dec 18, 1993, see Fukuyama Y. Brain Dev July/Aug 1994;16:339-346. Papers included neurochemical aspects, EEG studies, and clinical, epidemiological, and treatment reports. The reputed safety and effectiveness of intermittent oral diazepam (0.4 mg/kg, 3 doses) at times of fever for prevention of recurrence of febrile seizures was supported in 23 children treated at Shimane Medical University and Central Hospital, Japan. GLUTAMATE IN PYRIDOXINE-DEPENDENT EPILEPSY Cerebrospinal fluid levels of glutamate, g-aminobutyric acid, and pyridoxal-5-phosphate examined in a patient with pyridoxine dependency while on and off vitamin B6 treatment are reported from Universitat Munchen, and Universitats-Nervenklinik, Wurzburg, Germany. Seizures began at age 3 weeks. Despite phenobarbital, status epilepticus occurred at 3 months and was followed by infantile spasms and hypsarrhythmia. The addition of ACTH and vitamin B6 controlled the seizures and the EEG became normal. Seizures recurred on each of several occasions when vitamin B6 was withdrawn. CSF glutamate was elevated 200-fold, whereas GABA and PLP were normal. After vitamin B6 (5 mg/kg BW/day) was reintroduced, seizures stopped and the EEG was normal, but CSF glutamate was still elevated 10 fold.
    [Show full text]
  • Febrile Seizures: Clinical Practice Guideline for the Long-Term Management of the Child with Simple Febrile Seizures
    CLINICAL PRACTICE GUIDELINE Febrile Seizures: Clinical Practice Guideline for the Long-term Management of the Child With Simple Febrile Seizures Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures ABSTRACT Febrile seizures are the most common seizure disorder in childhood, affecting 2% to 5% of children between the ages of 6 and 60 months. Simple febrile seizures are www.pediatrics.org/cgi/doi/10.1542/ peds.2008-0939 defined as brief (Ͻ15-minute) generalized seizures that occur once during a 24-hour period in a febrile child who does not have an intracranial infection, doi:10.1542/peds.2008-0939 metabolic disturbance, or history of afebrile seizures. This guideline (a revision of All clinical reports from the American Academy of Pediatrics automatically expire the 1999 American Academy of Pediatrics practice parameter [now termed clinical 5 years after publication unless reaffirmed, practice guideline] “The Long-term Treatment of the Child With Simple Febrile revised, or retired at or before that time. Seizures”) addresses the risks and benefits of both continuous and intermittent The guidance in this report does not anticonvulsant therapy as well as the use of antipyretics in children with simple indicate an exclusive course of treatment febrile seizures. It is designed to assist pediatricians by providing an analytic or serve as a standard of medical care. Variations, taking into account individual framework for decisions regarding possible therapeutic interventions in this pa- circumstances, may be appropriate. tient population. It is not intended to replace clinical judgment or to establish a Key Word protocol for all patients with this disorder.
    [Show full text]
  • Chloride Channelopathies Rosa Planells-Cases, Thomas J
    Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch To cite this version: Rosa Planells-Cases, Thomas J. Jentsch. Chloride channelopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2009, 1792 (3), pp.173. 10.1016/j.bbadis.2009.02.002. hal- 00501604 HAL Id: hal-00501604 https://hal.archives-ouvertes.fr/hal-00501604 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch PII: S0925-4439(09)00036-2 DOI: doi:10.1016/j.bbadis.2009.02.002 Reference: BBADIS 62931 To appear in: BBA - Molecular Basis of Disease Received date: 23 December 2008 Revised date: 1 February 2009 Accepted date: 3 February 2009 Please cite this article as: Rosa Planells-Cases, Thomas J. Jentsch, Chloride chan- nelopathies, BBA - Molecular Basis of Disease (2009), doi:10.1016/j.bbadis.2009.02.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Pediatrics and Neonatology (2014) 55, 161e167 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.pediatr-neonatol.com REVIEW ARTICLE Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus Kuang-Lin Lin, Huei-Shyong Wang* Division of Pediatric Neurology, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan Received Mar 11, 2013; received in revised form Jul 3, 2013; accepted Jul 16, 2013 Available online 16 September 2013 Key Words Status epilepticus in childhood is more common, with a different range of causes and a lower status epilepticus; risk of death, than convulsive status epilepticus in adults. Acute central nervous system infec- childhood; tions appear to be markers for morbidity and mortality. Nevertheless, central nervous infec- encephalitis; tion is usually presumed in these conditions. Many aspects of the pathogenesis of acute antineuronal encephalitis and acute febrile encephalopathy with status epilepticus have been clarified in antibodies the past decade. The pathogenesis is divided into direct pathogens invasion or immune- mediated mechanisms. Over the past few decades, the number of antineuronal antibodies to ion channels, receptors, and other synaptic proteins described in association with central nervous system disorders has increased dramatically, especially
    [Show full text]
  • C1 PAGE.Indd
    Neurology.org/N Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Editors John J. Millichap, MD Att ending Epileptologist Ann & Robert H. Lurie Children’s Hospital of Chicago Associate Professor of Pediatrics and Neurology Northwestern University Feinberg School of Medicine Chicago, IL Jonathan W. Mink, MD, PhD Frederick A. Horner, MD Endowed Professor in Pediatric Neurology Professor of Neurology, Neuroscience, and Pediatrics Chief, Division of Child Neurology Vice Chair, Department of Neurology University of Rochester Medical Center Rochester, NY Phillip L. Pearl, MD Director of Epilepsy and Clinical Neurophysiology William G. Lennox Chair, Boston Children’s Hospital Professor of Neurology Harvard Medical School Boston, MA Roy E. Strowd III, MEd, MD Assistant Professor Neurology and Oncology Wake Forest School of Medicine Winston Salem, NC © 2019 American Academy of Neurology. All rights reserved. All articles have been published in Neurology®. Opinions expressed by the authors are not necessarily those of the American Academy of Neurology, its affi liates, or of the Publisher. Th e American Academy of Neurology, its affi liates, and the Publisher disclaim any liability to any party for the accuracy, completeness, effi cacy, or availability of the material contained in this publication (including drug dosages) or for any damages arising out of the use or non-use of any of the material contained in this publication. TABLE OF CONTENTS Neurology.org/N Section 2. Pediatric stroke and cerebrovascular disorders 25 Introduction Robert Hurford, Laura L. Lehman, Behnam Sabayan, and Mitchell S.V.
    [Show full text]
  • Pepid Pediatric Emergency Medicine Clinical Topics
    PEPID PEDIATRIC EMERGENCY MEDICINE CLINICAL TOPICS NEONATOLOGY • CEPHAL HEMATOMA • CYSTIC FIBROSIS • ABDOMINAL AND CHEST WALL • CEREBRAL PALSY • CYTOMEGALOVIRUS (CMV) DEFECTS (NEONATE AND INFANT) • CHRONIC NEONATAL LUNG • DELAYED TRANSITION • ABNORMAL HEAD SHAPE DISEASE • DRUG EXPOSED INFANT • ABO-INCOMPATIBILITY • COMNGENITAL PARVOVIRUS B 19 • ERYTHROBLASTOSIS FETALIS • ACNE - INFANTILE • CONGENITAL CANDIDIASIS • EXAMINATION OF THE NEWBORN • ALIGILLE SYNDROME • CONGENITAL CATARACTS • EXCHANGE TRANSFUSION • AMBIGUOUS GENITALIA • CONGENITAL CMV • EYE MISALIGNMENT • AMNIOTIC FLUID ASPIRATION • CONGENITAL COXSACKIEVIRUS • FETAL HYDRONEPHROSIS • ANAL ATRESIA • CONGENITAL DYSERYTHROPOIETIC • FETOMATERNAL TRANSFUSION • ANEMIA - SEVERE AT BIRTH ANEMIA • FFEDS/FLUIDS - PRETERM • ANEMIA OF PREMATURITY • CONGENITAL EMPHYSEMA • FPIES(FOOD PROTEIN INDUCED • ANHYDRAMNIOS SEQUENCE • CONGENITAL GLAUCOMA ENTEROCOLITIES SYNDROME) • APGAR SCORE • CONGENITAL GOITER • GASTRO INTESTINAL REFLUX • APNEA OF PREMATURITY • CONGENITAL HEART BLOCK • GROUP B STREPTOCOCCUS • APT TEST • CONGENITAL HEPATIC FIBROSIS • HEMORRHAGIC DISEASE OF THE • ASPHYXIATING THORACIC DYSTRO- • CONGENITAL HEPATITIS B NEWBORN PHY (JEUNE SYNDROME) INFECTION • HEPATIC RUPTURE • ATELECTASIS • CONGENITAL HEPTITIS C • HIV • ATRIAL SEPTAL DEFECTS INFECTION • HYALINE MEMBRANE DISEASE • BARLOW MANEUVER • CONGENITAL HYDROCELE • HYDROCEPHALUS • BECKWITH-WIEDEMANN SYN- • CONGENITAL HYPOMYELINATING • HYDROPS FETALIS DROME • CONGENITAL HYPOTHYROIDISM • HYPOGLYCEMIA OF INFANCY • BENIGN FAMILIAL NEONATAL
    [Show full text]
  • The Immune System in Pediatric Seizures and Epilepsies
    TheChristian M. Korff,Immune MD, a Russell C. Dale, MD,System PhDb in Pediatric Seizures and Epilepsies abstract The relation between the immune system and epilepsy has been studied for a long time. Immune activation may precede or follow the appearance of seizures. Depending on the situation, the innate and acquired immunity may be involved to various degrees. The intense, ongoing research has opened encouraging management and therapeutic perspectives for a significant number of patients suffering from seizures. These include the use of various drugs and less conventional approaches with anti-inflammatory or immunomodulatory properties. Data for children remain scarce, however, and the practical implications of recent discoveries in the field remain to be identified formally. The aim of this review is to present current knowledge of the role of immunity in relation to seizures, with a particular emphasis on clinical data available in childhood. More specifically, various autoantibodies involved in autoimmune encephalitis and epilepsy and general pathophysiological hypotheses on the role of immunity in seizure genesis are discussed, specific epilepsy syndromes in which autoimmune a components have been studied are summarized, workup recommendations Pediatric Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland; and bThe Children’s Hospital at and therapeutic options are suggested, and finally, open questions and Westmead Clinical School, University of Sydney, Sydney, future needs are presented. New South Wales, Australia Drs Korff and Dale conceptualized and designed the study, drafted the initial manuscript, and approved 4 the final manuscript as submitted. The risk of new onset seizures is psoriasis. In some of these situations, DOI: https:// doi.
    [Show full text]
  • Possible Role of SCN4A Skeletal Muscle Mutation in Apnea During Seizure
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UCL Discovery Received: 20 November 2018 | Revised: 20 May 2019 | Accepted: 8 June 2019 DOI: 10.1002/epi4.12347 SHORT RESEARCH ARTICLE Possible role of SCN4A skeletal muscle mutation in apnea during seizure Dilşad Türkdoğan1 | Emma Matthews2 | Sunay Usluer3 | Aslı Gündoğdu4 | Kayıhan Uluç5 | Roope Mannikko2 | Michael G. Hanna2 | Sanjay M. Sisodiya6,7 | Hande S. Çağlayan4,8 1Medical Faculty, Department of Child Neurology, Marmara University, Istanbul, Abstract Turkey SCN4A gene mutations cause a number of neuromuscular phenotypes including my- 2Queen Square Centre for Neuromuscular otonia. A subset of infants with myotonia‐causing mutations experience severe life‐ Diseases, UCL Queen Square Institute of threatening episodic laryngospasm with apnea. We have recently identified similar Neurology, UCL and National Hospital for Neurology and Neurosurgery, London, UK SCN4A mutations in association with sudden infant death syndrome. Laryngospasm 3Formerly Affiliated with Department of has also been proposed as a contributory mechanism to some cases of sudden unex- Molecular Biology and Genetics, Boğaziçi pected death in epilepsy (SUDEP). We report an infant with EEG‐confirmed seizures University, Istanbul, Turkey and recurrent apneas. Whole‐exome sequencing identified a known pathogenic mu- 4Department of Molecular Biology and SCN4A Genetics, Boğaziçi University, Istanbul, tation in the gene that has been reported in several unrelated families with Turkey myotonic disorder.
    [Show full text]
  • Febrile Seizures Clinical Pathway Johns Hopkins All Children’S Hospital
    JOHNS HOPKINS ALL CHILDREN’S HOSPITAL Febrile Seizures Clinical Pathway Johns Hopkins All Children’s Hospital Febrile Seizures Clinical Pathway Table of Contents 1. Rationale 2. Simple Febrile Seizure a. Background b. Diagnosis c. Discharge Criteria 3. Complex Febrile Seizure a. Algorithm b. Background and Diagnosis c. Evaluation i. Imaging ii. EEG d. Treatment e. Disposition f. Summary of Recommendations for Complex Febrile Seizure g. Pathway to Home 4. References 5. Outcome measures Updated: December 2019 Owners: Leslie Carroll, MD; Lisa Odendal, MD This pathway is intended as a guide for physicians, physician assistants, nurse practitioners and other healthcare providers. It should be adapted to the care of specific patient based on the patient’s individualized circumstances and the practitioner’s professional judgment. 1 Johns Hopkins All Children's Hospital Febrile Seizure Clinical Pathway Rationale: This clinical pathway was developed by a consensus group of JHACH physicians and advanced practice providers to standardize the management of children presenting to the hospital with a febrile seizure. It addresses the following clinical questions or problems: 1. How to define simple and complex febrile seizures 2. Which patient’s presenting with febrile seizures are higher risk and how to evaluate them 3. When to consider a neurology consult 4. Which patients can be discharged home and when it is recommended to admit Simple Febrile Seizures Background Definition: A febrile seizure is defined as a patient age 6 months to 60 months with seizure and fever >38 degrees C or parental report of fever within 24 hours. Criteria for simple febrile seizures includes a generalized tonic-clonic seizure lasting less than 15 minutes without recurrence in 24 hours.
    [Show full text]
  • Genetics in Epilepsy
    Experimental Neurobiology Vol. 12, pages 71~80, December 2003 Genetics in Epilepsy Chang-Ho Yun1,* and Beom S. Jeon2 1Department of Neurology, College of Medicine, Inha University, Incheon 400-711, Korea, 2Department of Neurology, Seoul National University College of Medicine, Seoul 110-744, Korea ABSTRACT The importance of genetic contributions to the epilepsies is now well established. Mutations in over 70 genes now define biological pathways leading to the epilepsy. These mutations disrupt a very large spectrum of biologic function. Some of the in- herited errors alter the intrinisic ion channel properties directly responsible for neuronal hyperexcitability and others have impact on the brain development or cellular regulation. This paper reviews the pathogenic implications of the established genetic mutations and briefly mentioned the susceptible genes in hereditary or familial epilepsy syndrome. Key words: Genetic, epilepsy INTRODUCTION causing epilepsies. Once the abnormalities such as genes and their products are identified, it will lead Epilepsy affects more than 0.5% of the general to an understanding of how the alterations in indi- population and has a significant hereditary compo- vidual neuronal or neural network properties cause nent. Twin studies that report concordance rates epilepsy (Delgado-Escueta et al., 1994). Probably consistently higher in monozygotic (MZ) than in di- less than 1% of patients with epilepsy are found to zygotic (DZ) twins provides strong support for a ge- have a seizure disorder caused by a single gene netic role in epilepsy (Berkovic et al., 1998). Con- mutation. The vast majority of epilepsy cases are cordance rates ranged from 10.8% in MZ pairs with considered complex traits, a combination of environ- acquired brain injuries to 70% in those without these mental factors and multiple genetic influences.
    [Show full text]
  • A Thesis Submitted by Liliya Silayeva in Partial
    SEIZURES RAPIDLY IMPAIR PHOSPHORYLATION-DEPENDENT REGULATORY MECHANISMS OF KCC2 A thesis submitted by Liliya Silayeva In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience TUFTS UNIVERSITY Sackler School of Graduate Biomedical Sciences August 31, 2013 ADVISER: Stephen J. Moss i Pain is weakness leaving the body. It is a well known fact that it takes a village…this work is dedicated to the following village. ii ABSTRACT Status epilepticus, the development of prolonged or repetitive epileptiform activity without recovery in between, is a medical emergency. The vast majority of biomedical research applied to SE treatment has focused on targeting the GABAA receptor to promote neuronal inhibition. Little attention is given to the mechanism that establishes hyperpolarizing GABAA receptor currents in the adult brain. The K+-Cl– cotransporter KCC2 has been well established as the primary chloride extrusion mechanism in adult neurons that generates the low intracellular Cl– concentration necessary for fast synaptic inhibition. The major findings of this study are 1) phosphorylation of KCC2 at S940 is necessary for surviving kainate- induced SE, 2) phosphorylation of KCC2 at T906 contributes to the behavioral and electrographic seizures observed upon SE induction, and 3) phosphorylation of KCC2 at T906 may be mediated by Wnk3 kinase. These findings improve our understanding of the mechanisms underlying the development SE, which could in turn lead to novel therapeutic strategies for the treatment of this debilitating and deadly condition. iii ACKNOWLEDGEMENTS Steve. For putting my career in my hands. Seriously. Thanks. For not firing me once it became clear that curry was never going to be my thing.
    [Show full text]