The Immune System in Pediatric Seizures and Epilepsies

Total Page:16

File Type:pdf, Size:1020Kb

The Immune System in Pediatric Seizures and Epilepsies TheChristian M. Korff,Immune MD, a Russell C. Dale, MD,System PhDb in Pediatric Seizures and Epilepsies abstract The relation between the immune system and epilepsy has been studied for a long time. Immune activation may precede or follow the appearance of seizures. Depending on the situation, the innate and acquired immunity may be involved to various degrees. The intense, ongoing research has opened encouraging management and therapeutic perspectives for a significant number of patients suffering from seizures. These include the use of various drugs and less conventional approaches with anti-inflammatory or immunomodulatory properties. Data for children remain scarce, however, and the practical implications of recent discoveries in the field remain to be identified formally. The aim of this review is to present current knowledge of the role of immunity in relation to seizures, with a particular emphasis on clinical data available in childhood. More specifically, various autoantibodies involved in autoimmune encephalitis and epilepsy and general pathophysiological hypotheses on the role of immunity in seizure genesis are discussed, specific epilepsy syndromes in which autoimmune a components have been studied are summarized, workup recommendations Pediatric Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland; and bThe Children’s Hospital at and therapeutic options are suggested, and finally, open questions and Westmead Clinical School, University of Sydney, Sydney, future needs are presented. New South Wales, Australia Drs Korff and Dale conceptualized and designed the study, drafted the initial manuscript, and approved 4 the final manuscript as submitted. The risk of new onset seizures is psoriasis. In some of these situations, DOI: https:// doi. org/ 10. 1542/ peds. 2016- 3534 particularly high during childhood. specific autoantibodies (auto-ABs) The average prevalence of nonfebrile have been involved in the development Accepted for publication Apr 17, 2017 recurrent seizures in developed of neurologic signs and symptoms, Address correspondence to Christian M. Korff, countries is between 3.5 and 5 per yet precise pathophysiological MD, Pediatric Neurology Unit, Child and Adolescent 1,2 Department, University Hospitals of Geneva, 6 Rue 1000 children, and the cumulative mechanisms remain to be identified. ∼ Willy-Donzé, CH 1211 Geneva 14, Switzerland. E-mail: incidence rate of epilepsy by age 15 In addition, immune function has [email protected] years old is 0.8%. Despite huge been intensively studied in numerous PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, advances in the field of imaging primary neurologic diseases, which 1098-4275). and genetics that have improved include the common epilepsies Copyright © 2017 by the American Academy of the understanding of underlying Pediatrics for which an underlying etiology5 pathophysiological mechanisms, remains to be discovered. The FINANCIAL DISCLOSURE: The authors have > 60% of seizure disorders remain3 acknowledgment of the importance indicated they have no financial relationships without an identifiable cause. of immunity in the pathophysiology relevant to this article to disclose. N In a recent, large population-based of the epilepsies is illustrated by the FUNDING: No external funding. study ( = 2518034), children with current intention of the International POTENTIAL CONFLICT OF INTEREST: The authors autoimmune diseases had an overall League Against Epilepsy to include have indicated they have no potential conflicts of interest to disclose. 5 times higher risk of epilepsy when 4 a new immune etiological category compared with age-matched controls. in its proposal for6 an Organization This risk was consistently heightened of the Epilepsies. Overall, the To cite: Korff CM and Dale RC. The Immune System in all of the 12 autoimmune diseases ongoing research in that field in Pediatric Seizures and Epilepsies. Pediatrics. 2017;140(3):e20163534 considered, including some not known opens encouraging management to affect central nervous system (CNS) and therapeutic perspectives for a function such as myasthenia gravis or significant number of adults with Downloaded from www.aappublications.org/news by guest on September 27, 2021 PEDIATRICS Volume 140, number 3, September 2017:e20163534 STATE-OF-THE-ART REVIEW ARTICLE Korff and Dale https://doi.org/10.1542/peds.2016-3534 September 2017 The Immune System in Pediatric Seizures and Epilepsies 3 140 Pediatrics 2017 ROUGH GALLEY PROOF TABLE 1 Auto-ABs Against Neuronal Antigenic Targets Reported in Children With Seizures Intracellular Antigens Surface Antigens GAD Onconeural VGKC-complex NMDA-R AMPA-R Folate-R GABAA-R GABAB-R Glycine-R DPPX-6 (including Caspr-2) Suggestive LE, ataxia, LE, ataxia LE, focal Psychiatric LE (limited Early-onset LE, multifocal LE (limited Stiff-person Prodromal associated type-1 (limited seizures, disturbance, data in refractory encephalitis data in syndrome, weight loss, features diabetes data in neuromyotonia movement children) seizures, (limited children) PERM, LE, gastrointestinal children) disorder, developmental data in focal dysmotility, sleep delay and/or children) encephalitis psychiatric difficulties, regression, manifestations, dysautonomia microcephaly brainstem involvement Prognosis in Unfavorable Unknown Favorable with Favorable with Unknown Unknown, may Unknown Unknown Favorable Favorable with children immune immune improve with immune therapy or therapy or with folinic immune therapy associated- associated- acid therapy tumor tumor (often removal ovarian) removal Important 12– 15 16 17– 23 24– 29 38 30– 32 11 33 34– 36 pediatric references Auto-ABs found predominantly in adults are not presented. ABs against leucine-rich glioma inactivated protein have not yet been reported in children with seizures. AMPA, α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid; DPPX-6, dipeptidyl-peptidase-like protein-6; GABA, γ aminobutyric acid; PERM, progressive encephalomyelitis with rigidity and myoclonus; R, receptor; VGKC, voltage-gated potassium channels. – 10 seizures,7 but data in children remain contributes to the protection of the this subject11 extensively38 . Current scarce. Because early identification brain from permanent damage after knowledge is summarized in and intervention is increasingly seizures; in certain circumstances, Table 1. shown to improve the general however, these immune8 processes outcome, alerting pediatricians about may be deleterious. In addition, Autoimmune encephalitis syndromes this specific topic is important. various auto-ABs have been are increasingly being defined by associated with acute or chronic their associated auto-AB biomarker, Accordingly, this article presents conditions in which seizures are such as N-methyl D-aspartate an overview of the current state a hallmark, but it is often unclear glutamate receptor (NMDA-R) of knowledge of the involvement whether they are pathogenic or if AB. However, many patients with of innate and adaptive immunity they simply represent markers of an suspected autoimmune encephalitis in epilepsies with an emphasis on underlying disease. do not have an associated biomarker, available pediatric data. Auto-ABs Related to Seizures in and so clinical syndromes remain IMMUNITY AND EPILEPSIES: RECENT Childhood important, the most important of PROGRESS IN THE UNDERSTANDING OF which being limbic encephalitis (LE). A COMPLEX RELATIONSHIP LE is an inflammatory encephalitis Numerous auto-ABs have been that predominantly affects the the subjects9 of study in epilepsy in limbic region with clinical memory An explosion of the number of past years. Two main categories change, temporal lobe seizures, and scientific studies on the relation of auto-ABs are usually identified psychiatric symptoms, and it is more between autoimmunity and epilepsy based on the location of their target common in adults than in children. has occurred since the early 1990s. antigens: intracellular (unlikely to MRIs typically show restricted In some circumstances, immune be pathogenic) or neuronal surface inflammation and swelling in the activation precedes and provokes (likely to be pathogenic). Their bilateral limbic regions, EEGs can the appearance of seizures. Animal presence has been demonstrated show localizing features, and CSF research data indicate that contrarily, in the serum or cerebrospinal may show features of inflammation. in other situations, the inflammatory fluid (CSF) of many patients with A set of diagnostic criteria for LE has cascade may be activated by the seizures, but the precise roles of been39 recently proposed by Graus seizures themselves. It is generally many auto-ABs remains to be fully et al. Unlike in adults, when LE is accepted that a certain degree of understood, especially in children. often associated with paraneoplastic immune reaction is favorable and A recent review article covers auto-ABs, LE in children is often Downloaded from www.aappublications.org/news by guest on September 27, 2021 2 KORFF and DALE Korff and Dale https://doi.org/10.1542/peds.2016-3534 September 2017 The Immune System in Pediatric Seizures and Epilepsies 3 140 Pediatrics 2017 ROUGH GALLEY PROOF TABLE 2 Pediatric Epilepsies or Epileptic Conditions in Which Dysimmune Features Have Been Reported Disease Disease Characteristics Underlying Cause Major Elements Indicating Ref. No(s). Immune Activation Rasmussen encephalitis Refractory focal epilepsy, Unknown 1. Peripheral T cells stimulated 40–59 progressive hemispheric by GluRε2 atrophy,
Recommended publications
  • The Genetic Relationship Between Paroxysmal Movement Disorders and Epilepsy
    Review article pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(3):76-87 https://doi.org/10.26815/acn.2020.00073 The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy Hyunji Ahn, MD, Tae-Sung Ko, MD Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea Received: May 1, 2020 Revised: May 12, 2020 Seizures and movement disorders both involve abnormal movements and are often difficult to Accepted: May 24, 2020 distinguish due to their overlapping phenomenology and possible etiological commonalities. Par- oxysmal movement disorders, which include three paroxysmal dyskinesia syndromes (paroxysmal Corresponding author: kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dys- Tae-Sung Ko, MD kinesia), hemiplegic migraine, and episodic ataxia, are important examples of conditions where Department of Pediatrics, Asan movement disorders and seizures overlap. Recently, many articles describing genes associated Medical Center Children’s Hospital, University of Ulsan College of with paroxysmal movement disorders and epilepsy have been published, providing much infor- Medicine, 88 Olympic-ro 43-gil, mation about their molecular pathology. In this review, we summarize the main genetic disorders Songpa-gu, Seoul 05505, Korea that results in co-occurrence of epilepsy and paroxysmal movement disorders, with a presenta- Tel: +82-2-3010-3390 tion of their genetic characteristics, suspected pathogenic mechanisms, and detailed descriptions Fax: +82-2-473-3725 of paroxysmal movement disorders and seizure types. E-mail: [email protected] Keywords: Dyskinesias; Movement disorders; Seizures; Epilepsy Introduction ies, and paroxysmal dyskinesias [3,4]. Paroxysmal dyskinesias are an important disease paradigm asso- Movement disorders often arise from the basal ganglia nuclei or ciated with overlapping movement disorders and seizures [5].
    [Show full text]
  • The Frequency of Seizures with Roseola. the Study Corroborates the Suggestion That Seizures with Roseola, HHV-6, and Fever Are Not Always Simple in Type
    the frequency of seizures with roseola. The study corroborates the suggestion that seizures with roseola, HHV-6, and fever are not always simple in type. They are frequently prolonged, recurrent, and complex, and sometimes a manifestation of encephalitis or encephalopathy. (Progress in Pediatric Neurology II. Millichap JG, Ed, PNB Publ, 1994, pp 410, 415). These findings further weaken the hypothesis of the so-called simple febrile seizure as a distinct disease entity. For abstracts from the 16th annual conference on febrile convulsions held in Tokyo, Dec 18, 1993, see Fukuyama Y. Brain Dev July/Aug 1994;16:339-346. Papers included neurochemical aspects, EEG studies, and clinical, epidemiological, and treatment reports. The reputed safety and effectiveness of intermittent oral diazepam (0.4 mg/kg, 3 doses) at times of fever for prevention of recurrence of febrile seizures was supported in 23 children treated at Shimane Medical University and Central Hospital, Japan. GLUTAMATE IN PYRIDOXINE-DEPENDENT EPILEPSY Cerebrospinal fluid levels of glutamate, g-aminobutyric acid, and pyridoxal-5-phosphate examined in a patient with pyridoxine dependency while on and off vitamin B6 treatment are reported from Universitat Munchen, and Universitats-Nervenklinik, Wurzburg, Germany. Seizures began at age 3 weeks. Despite phenobarbital, status epilepticus occurred at 3 months and was followed by infantile spasms and hypsarrhythmia. The addition of ACTH and vitamin B6 controlled the seizures and the EEG became normal. Seizures recurred on each of several occasions when vitamin B6 was withdrawn. CSF glutamate was elevated 200-fold, whereas GABA and PLP were normal. After vitamin B6 (5 mg/kg BW/day) was reintroduced, seizures stopped and the EEG was normal, but CSF glutamate was still elevated 10 fold.
    [Show full text]
  • Febrile Seizures: Clinical Practice Guideline for the Long-Term Management of the Child with Simple Febrile Seizures
    CLINICAL PRACTICE GUIDELINE Febrile Seizures: Clinical Practice Guideline for the Long-term Management of the Child With Simple Febrile Seizures Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures ABSTRACT Febrile seizures are the most common seizure disorder in childhood, affecting 2% to 5% of children between the ages of 6 and 60 months. Simple febrile seizures are www.pediatrics.org/cgi/doi/10.1542/ peds.2008-0939 defined as brief (Ͻ15-minute) generalized seizures that occur once during a 24-hour period in a febrile child who does not have an intracranial infection, doi:10.1542/peds.2008-0939 metabolic disturbance, or history of afebrile seizures. This guideline (a revision of All clinical reports from the American Academy of Pediatrics automatically expire the 1999 American Academy of Pediatrics practice parameter [now termed clinical 5 years after publication unless reaffirmed, practice guideline] “The Long-term Treatment of the Child With Simple Febrile revised, or retired at or before that time. Seizures”) addresses the risks and benefits of both continuous and intermittent The guidance in this report does not anticonvulsant therapy as well as the use of antipyretics in children with simple indicate an exclusive course of treatment febrile seizures. It is designed to assist pediatricians by providing an analytic or serve as a standard of medical care. Variations, taking into account individual framework for decisions regarding possible therapeutic interventions in this pa- circumstances, may be appropriate. tient population. It is not intended to replace clinical judgment or to establish a Key Word protocol for all patients with this disorder.
    [Show full text]
  • Chloride Channelopathies Rosa Planells-Cases, Thomas J
    Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch To cite this version: Rosa Planells-Cases, Thomas J. Jentsch. Chloride channelopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2009, 1792 (3), pp.173. 10.1016/j.bbadis.2009.02.002. hal- 00501604 HAL Id: hal-00501604 https://hal.archives-ouvertes.fr/hal-00501604 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch PII: S0925-4439(09)00036-2 DOI: doi:10.1016/j.bbadis.2009.02.002 Reference: BBADIS 62931 To appear in: BBA - Molecular Basis of Disease Received date: 23 December 2008 Revised date: 1 February 2009 Accepted date: 3 February 2009 Please cite this article as: Rosa Planells-Cases, Thomas J. Jentsch, Chloride chan- nelopathies, BBA - Molecular Basis of Disease (2009), doi:10.1016/j.bbadis.2009.02.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form.
    [Show full text]
  • Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Pediatrics and Neonatology (2014) 55, 161e167 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.pediatr-neonatol.com REVIEW ARTICLE Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus Kuang-Lin Lin, Huei-Shyong Wang* Division of Pediatric Neurology, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan Received Mar 11, 2013; received in revised form Jul 3, 2013; accepted Jul 16, 2013 Available online 16 September 2013 Key Words Status epilepticus in childhood is more common, with a different range of causes and a lower status epilepticus; risk of death, than convulsive status epilepticus in adults. Acute central nervous system infec- childhood; tions appear to be markers for morbidity and mortality. Nevertheless, central nervous infec- encephalitis; tion is usually presumed in these conditions. Many aspects of the pathogenesis of acute antineuronal encephalitis and acute febrile encephalopathy with status epilepticus have been clarified in antibodies the past decade. The pathogenesis is divided into direct pathogens invasion or immune- mediated mechanisms. Over the past few decades, the number of antineuronal antibodies to ion channels, receptors, and other synaptic proteins described in association with central nervous system disorders has increased dramatically, especially
    [Show full text]
  • C1 PAGE.Indd
    Neurology.org/N Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Editors John J. Millichap, MD Att ending Epileptologist Ann & Robert H. Lurie Children’s Hospital of Chicago Associate Professor of Pediatrics and Neurology Northwestern University Feinberg School of Medicine Chicago, IL Jonathan W. Mink, MD, PhD Frederick A. Horner, MD Endowed Professor in Pediatric Neurology Professor of Neurology, Neuroscience, and Pediatrics Chief, Division of Child Neurology Vice Chair, Department of Neurology University of Rochester Medical Center Rochester, NY Phillip L. Pearl, MD Director of Epilepsy and Clinical Neurophysiology William G. Lennox Chair, Boston Children’s Hospital Professor of Neurology Harvard Medical School Boston, MA Roy E. Strowd III, MEd, MD Assistant Professor Neurology and Oncology Wake Forest School of Medicine Winston Salem, NC © 2019 American Academy of Neurology. All rights reserved. All articles have been published in Neurology®. Opinions expressed by the authors are not necessarily those of the American Academy of Neurology, its affi liates, or of the Publisher. Th e American Academy of Neurology, its affi liates, and the Publisher disclaim any liability to any party for the accuracy, completeness, effi cacy, or availability of the material contained in this publication (including drug dosages) or for any damages arising out of the use or non-use of any of the material contained in this publication. TABLE OF CONTENTS Neurology.org/N Section 2. Pediatric stroke and cerebrovascular disorders 25 Introduction Robert Hurford, Laura L. Lehman, Behnam Sabayan, and Mitchell S.V.
    [Show full text]
  • Pepid Pediatric Emergency Medicine Clinical Topics
    PEPID PEDIATRIC EMERGENCY MEDICINE CLINICAL TOPICS NEONATOLOGY • CEPHAL HEMATOMA • CYSTIC FIBROSIS • ABDOMINAL AND CHEST WALL • CEREBRAL PALSY • CYTOMEGALOVIRUS (CMV) DEFECTS (NEONATE AND INFANT) • CHRONIC NEONATAL LUNG • DELAYED TRANSITION • ABNORMAL HEAD SHAPE DISEASE • DRUG EXPOSED INFANT • ABO-INCOMPATIBILITY • COMNGENITAL PARVOVIRUS B 19 • ERYTHROBLASTOSIS FETALIS • ACNE - INFANTILE • CONGENITAL CANDIDIASIS • EXAMINATION OF THE NEWBORN • ALIGILLE SYNDROME • CONGENITAL CATARACTS • EXCHANGE TRANSFUSION • AMBIGUOUS GENITALIA • CONGENITAL CMV • EYE MISALIGNMENT • AMNIOTIC FLUID ASPIRATION • CONGENITAL COXSACKIEVIRUS • FETAL HYDRONEPHROSIS • ANAL ATRESIA • CONGENITAL DYSERYTHROPOIETIC • FETOMATERNAL TRANSFUSION • ANEMIA - SEVERE AT BIRTH ANEMIA • FFEDS/FLUIDS - PRETERM • ANEMIA OF PREMATURITY • CONGENITAL EMPHYSEMA • FPIES(FOOD PROTEIN INDUCED • ANHYDRAMNIOS SEQUENCE • CONGENITAL GLAUCOMA ENTEROCOLITIES SYNDROME) • APGAR SCORE • CONGENITAL GOITER • GASTRO INTESTINAL REFLUX • APNEA OF PREMATURITY • CONGENITAL HEART BLOCK • GROUP B STREPTOCOCCUS • APT TEST • CONGENITAL HEPATIC FIBROSIS • HEMORRHAGIC DISEASE OF THE • ASPHYXIATING THORACIC DYSTRO- • CONGENITAL HEPATITIS B NEWBORN PHY (JEUNE SYNDROME) INFECTION • HEPATIC RUPTURE • ATELECTASIS • CONGENITAL HEPTITIS C • HIV • ATRIAL SEPTAL DEFECTS INFECTION • HYALINE MEMBRANE DISEASE • BARLOW MANEUVER • CONGENITAL HYDROCELE • HYDROCEPHALUS • BECKWITH-WIEDEMANN SYN- • CONGENITAL HYPOMYELINATING • HYDROPS FETALIS DROME • CONGENITAL HYPOTHYROIDISM • HYPOGLYCEMIA OF INFANCY • BENIGN FAMILIAL NEONATAL
    [Show full text]
  • Possible Role of SCN4A Skeletal Muscle Mutation in Apnea During Seizure
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UCL Discovery Received: 20 November 2018 | Revised: 20 May 2019 | Accepted: 8 June 2019 DOI: 10.1002/epi4.12347 SHORT RESEARCH ARTICLE Possible role of SCN4A skeletal muscle mutation in apnea during seizure Dilşad Türkdoğan1 | Emma Matthews2 | Sunay Usluer3 | Aslı Gündoğdu4 | Kayıhan Uluç5 | Roope Mannikko2 | Michael G. Hanna2 | Sanjay M. Sisodiya6,7 | Hande S. Çağlayan4,8 1Medical Faculty, Department of Child Neurology, Marmara University, Istanbul, Abstract Turkey SCN4A gene mutations cause a number of neuromuscular phenotypes including my- 2Queen Square Centre for Neuromuscular otonia. A subset of infants with myotonia‐causing mutations experience severe life‐ Diseases, UCL Queen Square Institute of threatening episodic laryngospasm with apnea. We have recently identified similar Neurology, UCL and National Hospital for Neurology and Neurosurgery, London, UK SCN4A mutations in association with sudden infant death syndrome. Laryngospasm 3Formerly Affiliated with Department of has also been proposed as a contributory mechanism to some cases of sudden unex- Molecular Biology and Genetics, Boğaziçi pected death in epilepsy (SUDEP). We report an infant with EEG‐confirmed seizures University, Istanbul, Turkey and recurrent apneas. Whole‐exome sequencing identified a known pathogenic mu- 4Department of Molecular Biology and SCN4A Genetics, Boğaziçi University, Istanbul, tation in the gene that has been reported in several unrelated families with Turkey myotonic disorder.
    [Show full text]
  • Febrile Seizures Clinical Pathway Johns Hopkins All Children’S Hospital
    JOHNS HOPKINS ALL CHILDREN’S HOSPITAL Febrile Seizures Clinical Pathway Johns Hopkins All Children’s Hospital Febrile Seizures Clinical Pathway Table of Contents 1. Rationale 2. Simple Febrile Seizure a. Background b. Diagnosis c. Discharge Criteria 3. Complex Febrile Seizure a. Algorithm b. Background and Diagnosis c. Evaluation i. Imaging ii. EEG d. Treatment e. Disposition f. Summary of Recommendations for Complex Febrile Seizure g. Pathway to Home 4. References 5. Outcome measures Updated: December 2019 Owners: Leslie Carroll, MD; Lisa Odendal, MD This pathway is intended as a guide for physicians, physician assistants, nurse practitioners and other healthcare providers. It should be adapted to the care of specific patient based on the patient’s individualized circumstances and the practitioner’s professional judgment. 1 Johns Hopkins All Children's Hospital Febrile Seizure Clinical Pathway Rationale: This clinical pathway was developed by a consensus group of JHACH physicians and advanced practice providers to standardize the management of children presenting to the hospital with a febrile seizure. It addresses the following clinical questions or problems: 1. How to define simple and complex febrile seizures 2. Which patient’s presenting with febrile seizures are higher risk and how to evaluate them 3. When to consider a neurology consult 4. Which patients can be discharged home and when it is recommended to admit Simple Febrile Seizures Background Definition: A febrile seizure is defined as a patient age 6 months to 60 months with seizure and fever >38 degrees C or parental report of fever within 24 hours. Criteria for simple febrile seizures includes a generalized tonic-clonic seizure lasting less than 15 minutes without recurrence in 24 hours.
    [Show full text]
  • Genetics in Epilepsy
    Experimental Neurobiology Vol. 12, pages 71~80, December 2003 Genetics in Epilepsy Chang-Ho Yun1,* and Beom S. Jeon2 1Department of Neurology, College of Medicine, Inha University, Incheon 400-711, Korea, 2Department of Neurology, Seoul National University College of Medicine, Seoul 110-744, Korea ABSTRACT The importance of genetic contributions to the epilepsies is now well established. Mutations in over 70 genes now define biological pathways leading to the epilepsy. These mutations disrupt a very large spectrum of biologic function. Some of the in- herited errors alter the intrinisic ion channel properties directly responsible for neuronal hyperexcitability and others have impact on the brain development or cellular regulation. This paper reviews the pathogenic implications of the established genetic mutations and briefly mentioned the susceptible genes in hereditary or familial epilepsy syndrome. Key words: Genetic, epilepsy INTRODUCTION causing epilepsies. Once the abnormalities such as genes and their products are identified, it will lead Epilepsy affects more than 0.5% of the general to an understanding of how the alterations in indi- population and has a significant hereditary compo- vidual neuronal or neural network properties cause nent. Twin studies that report concordance rates epilepsy (Delgado-Escueta et al., 1994). Probably consistently higher in monozygotic (MZ) than in di- less than 1% of patients with epilepsy are found to zygotic (DZ) twins provides strong support for a ge- have a seizure disorder caused by a single gene netic role in epilepsy (Berkovic et al., 1998). Con- mutation. The vast majority of epilepsy cases are cordance rates ranged from 10.8% in MZ pairs with considered complex traits, a combination of environ- acquired brain injuries to 70% in those without these mental factors and multiple genetic influences.
    [Show full text]
  • A Thesis Submitted by Liliya Silayeva in Partial
    SEIZURES RAPIDLY IMPAIR PHOSPHORYLATION-DEPENDENT REGULATORY MECHANISMS OF KCC2 A thesis submitted by Liliya Silayeva In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience TUFTS UNIVERSITY Sackler School of Graduate Biomedical Sciences August 31, 2013 ADVISER: Stephen J. Moss i Pain is weakness leaving the body. It is a well known fact that it takes a village…this work is dedicated to the following village. ii ABSTRACT Status epilepticus, the development of prolonged or repetitive epileptiform activity without recovery in between, is a medical emergency. The vast majority of biomedical research applied to SE treatment has focused on targeting the GABAA receptor to promote neuronal inhibition. Little attention is given to the mechanism that establishes hyperpolarizing GABAA receptor currents in the adult brain. The K+-Cl– cotransporter KCC2 has been well established as the primary chloride extrusion mechanism in adult neurons that generates the low intracellular Cl– concentration necessary for fast synaptic inhibition. The major findings of this study are 1) phosphorylation of KCC2 at S940 is necessary for surviving kainate- induced SE, 2) phosphorylation of KCC2 at T906 contributes to the behavioral and electrographic seizures observed upon SE induction, and 3) phosphorylation of KCC2 at T906 may be mediated by Wnk3 kinase. These findings improve our understanding of the mechanisms underlying the development SE, which could in turn lead to novel therapeutic strategies for the treatment of this debilitating and deadly condition. iii ACKNOWLEDGEMENTS Steve. For putting my career in my hands. Seriously. Thanks. For not firing me once it became clear that curry was never going to be my thing.
    [Show full text]
  • Muscle and Brain Sodium Channelopathies: Under-Recognised, Potentially Fatal but Treatable Disorders
    1 Muscle and brain sodium channelopathies: under-recognised, potentially fatal but treatable disorders Emma Matthews1, MRCP, Simona Balestrini2, PhD, Prof Sanjay Sisodiya2, FRCP, and Prof Michael G Hanna, FRCP1 1MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK 2Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG, and Chalfont Centre for Epilepsy, Bucks, UK Corresponding author: Emma Matthews [email protected] Tel: 020 7679 2000 ext 84448 MRC Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK Word counts Summary: 172 Manuscript: 5574 2 Summary Voltage gated sodium channels are essential for excitability of skeletal muscle fibres and neurones. An increasing number of disabling or fatal paediatric neurological disorders linked to mutations of voltage gated sodium channel genes are recognised. Muscle phenotypes include episodic paralysis, myotonia, neonatal hypotonia, respiratory compromise, laryngospasm/stridor, congenital myasthenia and myopathy. Recent evidence suggests a possible link between sodium channel dysfunction and sudden infant death. Increasingly recognised brain sodium channelopathy phenotypes include several epilepsy disorders and complex encephalopathies. Together these early onset muscle and brain phenotypes have a significant morbidity and an appreciable mortality rate but there have been significant advances in understanding the pathophysiological mechanisms underlying them and these have helped to identify effective targeted therapies. The availability of effective treatments underlines the importance of increasing clinical awareness and the need to achieve a precise genetic diagnosis.
    [Show full text]