Muscle and Brain Sodium Channelopathies: Under-Recognised, Potentially Fatal but Treatable Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Periodic Paralysis: a Case Report of Normokalemic Presentation in a Young Girl
Case Report ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2021.35.005673 Periodic Paralysis: A Case Report of Normokalemic Presentation in a Young Girl Lucio Ceglie, Roberta Patacchiola, Daniela Iannucci, Miriana Guarino, Lorenzo Sansone, Maria Chiara Sgarrella, Francesco Chiarelli* and Annalisa Blasetti Department of Pediatrics, University of Chieti, Italy *Corresponding author: Francesco Chiarelli, Department of Pediatrics, University of Chieti, Italy ARTICLE INFO ABSTRACT Received: April 10, 2021 The skeletal muscle channelopathies represent a rare group of neuromuscular disorders which are caused by genetic mutations regarding voltage-gated ion Published: April 21, 2021 channels, which play an important role in muscle membrane depolarization. Muscle channelopathies are broadly divided into 2 main categories: nondystrophic myotonias (NDM) and periodic paralysis (PP). Periodic paralysis (PP) are rare autosomal dominant Citation: Lucio C, Roberta P, Daniela I, neuromuscular disorders, characterized clinically by periodic attacks of muscle weakness Miriana G, Francesco C, et al., Periodic in concomitance with serum potassium level alterations. It is possible to distinguish Paralysis: A Case Report of Normokalemic normokalemic, hyperkalemic and hypokalemic paralysis. PP is caused by genetic Presentation in a Young Girl. Biomed mutations in voltage-gate ion channels like sodium, potassium, and calcium channels, J Sci & Tech Res 35(2)-2021. BJSTR. which are determinant for muscle membrane depolarization. The most common genes MS.ID.005672. involved in pathogenesis are CACN1S, SCN4A and KCNJ2, encoding calcium, sodium, and potassium channels (Table 1). Moreover, paralysis related to serum potassium values Keywords: Hypokalemia; Periodic Paral- may also occur in thyreotoxicosis [1], Liddle syndrome, Gitelman syndrome, primary ysis; Transient Paralysis; Muscular Weak- hyperaldosteronism, and acid-base balance disorders. -
The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts. -
Identification of Gene Mutations in Patients with Primary Periodic
Luo et al. BMC Neurology (2019) 19:92 https://doi.org/10.1186/s12883-019-1322-6 RESEARCH ARTICLE Open Access Identification of gene mutations in patients with primary periodic paralysis using targeted next-generation sequencing Sushan Luo1†, Minjie Xu2†, Jian Sun1, Kai Qiao3, Jie Song1, Shuang Cai1, Wenhua Zhu1, Lei Zhou1, Jianying Xi1, Jiahong Lu1, Xiaohua Ni2, Tonghai Dou4 and Chongbo Zhao1,5* Abstract Background: Primary periodic paralysis is characterized by recurrent quadriplegia typically associated with abnormal serum potassium levels. The molecular diagnosis of primary PP previously based on Sanger sequencing of hot spots or exon-by-exon screening of the reported genes. Methods: We developed a gene panel that includes 10 ion channel-related genes and 245 muscular dystrophy- and myopathy-related genes and used this panel to diagnose 60 patients with primary periodic paralysis and identify the disease-causing or risk-associated gene mutations. Results: Mutations of 5 genes were discovered in 39 patients (65.0%). SCN4A, KCNJ2 and CACNA1S variants accounted for 92.5% of the patients with a genetic diagnosis. Conclusions: Targeted next-generation sequencing offers a cost-effective approach to expand the genotypes of primary periodic paralysis. A clearer genetic profile enables the prevention of paralysis attacks, avoidance of triggers and the monitoring of complications. Keywords: Primary periodic paralysis, Targeted next-generation sequencing, Gene panel, Gene mutation distribution, Calcium homeostasis. Background (SCN4A) and potassium voltage-gated channel subfamily Periodic paralysis (PP) is characterized by episodes of J member 2 (KCNJ2), that encode voltage-gated chan- muscle weakness that occur at irregular intervals due to nels in muscle membranes that generate or sustain skeletal muscle ion channelopathies. -
Distal Myopathies a Review: Highlights on Distal Myopathies with Rimmed Vacuoles
Review Article Distal myopathies a review: Highlights on distal myopathies with rimmed vacuoles May Christine V. Malicdan, Ikuya Nonaka Department of Neuromuscular Research, National Institutes of Neurosciences, National Center of Neurology and Psychiatry, Tokyo, Japan Distal myopathies are a group of heterogeneous disorders Since the discovery of the gene loci for a number classiÞ ed into one broad category due to the presentation of distal myopathies, several diseases previously of weakness involving the distal skeletal muscles. The categorized as different disorders have now proven to recent years have witnessed increasing efforts to identify be the same or allelic disorders (e.g. distal myopathy the causative genes for distal myopathies. The identiÞ cation with rimmed vacuoles and hereditary inclusion body of few causative genes made the broad classiÞ cation of myopathy, Miyoshi myopathy and limb-girdle muscular these diseases under “distal myopathies” disputable and dystrophy type 2B (LGMD 2B). added some enigma to why distal muscles are preferentially This review will focus on the most commonly affected. Nevertheless, with the clariÞ cation of the molecular known and distinct distal myopathies, using a simple basis of speciÞ c conditions, additional clues have been classification: distal myopathies with known molecular uncovered to understand the mechanism of each condition. defects [Table 1] and distal myopathies with unknown This review will give a synopsis of the common distal causative genes [Table 2]. The identification of the myopathies, presenting salient facts regarding the clinical, genes involved in distal myopathies has broadened pathological, and molecular aspects of each disease. Distal this classification into sub-categories as to the location myopathy with rimmed vacuoles, or Nonaka myopathy, will of encoded proteins: sarcomere (titin, myosin); plasma be discussed in more detail. -
The Genetic Relationship Between Paroxysmal Movement Disorders and Epilepsy
Review article pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(3):76-87 https://doi.org/10.26815/acn.2020.00073 The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy Hyunji Ahn, MD, Tae-Sung Ko, MD Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea Received: May 1, 2020 Revised: May 12, 2020 Seizures and movement disorders both involve abnormal movements and are often difficult to Accepted: May 24, 2020 distinguish due to their overlapping phenomenology and possible etiological commonalities. Par- oxysmal movement disorders, which include three paroxysmal dyskinesia syndromes (paroxysmal Corresponding author: kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dys- Tae-Sung Ko, MD kinesia), hemiplegic migraine, and episodic ataxia, are important examples of conditions where Department of Pediatrics, Asan movement disorders and seizures overlap. Recently, many articles describing genes associated Medical Center Children’s Hospital, University of Ulsan College of with paroxysmal movement disorders and epilepsy have been published, providing much infor- Medicine, 88 Olympic-ro 43-gil, mation about their molecular pathology. In this review, we summarize the main genetic disorders Songpa-gu, Seoul 05505, Korea that results in co-occurrence of epilepsy and paroxysmal movement disorders, with a presenta- Tel: +82-2-3010-3390 tion of their genetic characteristics, suspected pathogenic mechanisms, and detailed descriptions Fax: +82-2-473-3725 of paroxysmal movement disorders and seizure types. E-mail: [email protected] Keywords: Dyskinesias; Movement disorders; Seizures; Epilepsy Introduction ies, and paroxysmal dyskinesias [3,4]. Paroxysmal dyskinesias are an important disease paradigm asso- Movement disorders often arise from the basal ganglia nuclei or ciated with overlapping movement disorders and seizures [5]. -
The Frequency of Seizures with Roseola. the Study Corroborates the Suggestion That Seizures with Roseola, HHV-6, and Fever Are Not Always Simple in Type
the frequency of seizures with roseola. The study corroborates the suggestion that seizures with roseola, HHV-6, and fever are not always simple in type. They are frequently prolonged, recurrent, and complex, and sometimes a manifestation of encephalitis or encephalopathy. (Progress in Pediatric Neurology II. Millichap JG, Ed, PNB Publ, 1994, pp 410, 415). These findings further weaken the hypothesis of the so-called simple febrile seizure as a distinct disease entity. For abstracts from the 16th annual conference on febrile convulsions held in Tokyo, Dec 18, 1993, see Fukuyama Y. Brain Dev July/Aug 1994;16:339-346. Papers included neurochemical aspects, EEG studies, and clinical, epidemiological, and treatment reports. The reputed safety and effectiveness of intermittent oral diazepam (0.4 mg/kg, 3 doses) at times of fever for prevention of recurrence of febrile seizures was supported in 23 children treated at Shimane Medical University and Central Hospital, Japan. GLUTAMATE IN PYRIDOXINE-DEPENDENT EPILEPSY Cerebrospinal fluid levels of glutamate, g-aminobutyric acid, and pyridoxal-5-phosphate examined in a patient with pyridoxine dependency while on and off vitamin B6 treatment are reported from Universitat Munchen, and Universitats-Nervenklinik, Wurzburg, Germany. Seizures began at age 3 weeks. Despite phenobarbital, status epilepticus occurred at 3 months and was followed by infantile spasms and hypsarrhythmia. The addition of ACTH and vitamin B6 controlled the seizures and the EEG became normal. Seizures recurred on each of several occasions when vitamin B6 was withdrawn. CSF glutamate was elevated 200-fold, whereas GABA and PLP were normal. After vitamin B6 (5 mg/kg BW/day) was reintroduced, seizures stopped and the EEG was normal, but CSF glutamate was still elevated 10 fold. -
Myopathies Infosheet
The University of Chicago Genetic Services Laboratories 5841 S. Maryland Ave., Rm. G701, MC 0077, Chicago, Illinois 60637 Toll Free: (888) UC GENES (888) 824 3637 Local: (773) 834 0555 FAX: (773) 702 9130 [email protected] dnatesting.uchicago.edu CLIA #: 14D0917593 CAP #: 18827-49 Gene tic Testing for Congenital Myopathies/Muscular Dystrophies Congenital Myopathies Congenital myopathies are typically characterized by the presence of specific structural and histochemical features on muscle biopsy and clinical presentation can include congenital hypotonia, muscle weakness, delayed motor milestones, feeding difficulties, and facial muscle involvement (1). Serum creatine kinase may be normal or elevated. Heterogeneity in presenting symptoms can occur even amongst affected members of the same family. Congenital myopathies can be divided into three main clinicopathological defined categories: nemaline myopathy, core myopathy and centronuclear myopathy (2). Nemaline Myopathy Nemaline Myopathy is characterized by weakness, hypotonia and depressed or absent deep tendon reflexes. Weakness is typically proximal, diffuse or selective, with or without facial weakness and the diagnostic hallmark is the presence of distinct rod-like inclusions in the sarcoplasm of skeletal muscle fibers (3). Core Myopathy Core Myopathy is characterized by areas lacking histochemical oxidative and glycolytic enzymatic activity on histopathological exam (2). Symptoms include proximal muscle weakness with onset either congenitally or in early childhood. Bulbar and facial weakness may also be present. Patients with core myopathy are typically subclassified as either having central core disease or multiminicore disease. Centronuclear Myopathy Centronuclear Myopathy (CNM) is a rare muscle disease associated with non-progressive or slowly progressive muscle weakness that can develop from infancy to adulthood (4, 5). -
Febrile Seizures: Clinical Practice Guideline for the Long-Term Management of the Child with Simple Febrile Seizures
CLINICAL PRACTICE GUIDELINE Febrile Seizures: Clinical Practice Guideline for the Long-term Management of the Child With Simple Febrile Seizures Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures ABSTRACT Febrile seizures are the most common seizure disorder in childhood, affecting 2% to 5% of children between the ages of 6 and 60 months. Simple febrile seizures are www.pediatrics.org/cgi/doi/10.1542/ peds.2008-0939 defined as brief (Ͻ15-minute) generalized seizures that occur once during a 24-hour period in a febrile child who does not have an intracranial infection, doi:10.1542/peds.2008-0939 metabolic disturbance, or history of afebrile seizures. This guideline (a revision of All clinical reports from the American Academy of Pediatrics automatically expire the 1999 American Academy of Pediatrics practice parameter [now termed clinical 5 years after publication unless reaffirmed, practice guideline] “The Long-term Treatment of the Child With Simple Febrile revised, or retired at or before that time. Seizures”) addresses the risks and benefits of both continuous and intermittent The guidance in this report does not anticonvulsant therapy as well as the use of antipyretics in children with simple indicate an exclusive course of treatment febrile seizures. It is designed to assist pediatricians by providing an analytic or serve as a standard of medical care. Variations, taking into account individual framework for decisions regarding possible therapeutic interventions in this pa- circumstances, may be appropriate. tient population. It is not intended to replace clinical judgment or to establish a Key Word protocol for all patients with this disorder. -
Chloride Channelopathies Rosa Planells-Cases, Thomas J
Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch To cite this version: Rosa Planells-Cases, Thomas J. Jentsch. Chloride channelopathies. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2009, 1792 (3), pp.173. 10.1016/j.bbadis.2009.02.002. hal- 00501604 HAL Id: hal-00501604 https://hal.archives-ouvertes.fr/hal-00501604 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Chloride channelopathies Rosa Planells-Cases, Thomas J. Jentsch PII: S0925-4439(09)00036-2 DOI: doi:10.1016/j.bbadis.2009.02.002 Reference: BBADIS 62931 To appear in: BBA - Molecular Basis of Disease Received date: 23 December 2008 Revised date: 1 February 2009 Accepted date: 3 February 2009 Please cite this article as: Rosa Planells-Cases, Thomas J. Jentsch, Chloride chan- nelopathies, BBA - Molecular Basis of Disease (2009), doi:10.1016/j.bbadis.2009.02.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. -
Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Pediatrics and Neonatology (2014) 55, 161e167 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.pediatr-neonatol.com REVIEW ARTICLE Role of Antineuronal Antibodies in Children with Encephalopathy and Febrile Status Epilepticus Kuang-Lin Lin, Huei-Shyong Wang* Division of Pediatric Neurology, Chang Gung Children’s Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan Received Mar 11, 2013; received in revised form Jul 3, 2013; accepted Jul 16, 2013 Available online 16 September 2013 Key Words Status epilepticus in childhood is more common, with a different range of causes and a lower status epilepticus; risk of death, than convulsive status epilepticus in adults. Acute central nervous system infec- childhood; tions appear to be markers for morbidity and mortality. Nevertheless, central nervous infec- encephalitis; tion is usually presumed in these conditions. Many aspects of the pathogenesis of acute antineuronal encephalitis and acute febrile encephalopathy with status epilepticus have been clarified in antibodies the past decade. The pathogenesis is divided into direct pathogens invasion or immune- mediated mechanisms. Over the past few decades, the number of antineuronal antibodies to ion channels, receptors, and other synaptic proteins described in association with central nervous system disorders has increased dramatically, especially -
C1 PAGE.Indd
Neurology.org/N Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Child Neurology: A Case-Based Approach Cases from the Neurology® Resident & Fellow Section Editors John J. Millichap, MD Att ending Epileptologist Ann & Robert H. Lurie Children’s Hospital of Chicago Associate Professor of Pediatrics and Neurology Northwestern University Feinberg School of Medicine Chicago, IL Jonathan W. Mink, MD, PhD Frederick A. Horner, MD Endowed Professor in Pediatric Neurology Professor of Neurology, Neuroscience, and Pediatrics Chief, Division of Child Neurology Vice Chair, Department of Neurology University of Rochester Medical Center Rochester, NY Phillip L. Pearl, MD Director of Epilepsy and Clinical Neurophysiology William G. Lennox Chair, Boston Children’s Hospital Professor of Neurology Harvard Medical School Boston, MA Roy E. Strowd III, MEd, MD Assistant Professor Neurology and Oncology Wake Forest School of Medicine Winston Salem, NC © 2019 American Academy of Neurology. All rights reserved. All articles have been published in Neurology®. Opinions expressed by the authors are not necessarily those of the American Academy of Neurology, its affi liates, or of the Publisher. Th e American Academy of Neurology, its affi liates, and the Publisher disclaim any liability to any party for the accuracy, completeness, effi cacy, or availability of the material contained in this publication (including drug dosages) or for any damages arising out of the use or non-use of any of the material contained in this publication. TABLE OF CONTENTS Neurology.org/N Section 2. Pediatric stroke and cerebrovascular disorders 25 Introduction Robert Hurford, Laura L. Lehman, Behnam Sabayan, and Mitchell S.V. -
Pepid Pediatric Emergency Medicine Clinical Topics
PEPID PEDIATRIC EMERGENCY MEDICINE CLINICAL TOPICS NEONATOLOGY • CEPHAL HEMATOMA • CYSTIC FIBROSIS • ABDOMINAL AND CHEST WALL • CEREBRAL PALSY • CYTOMEGALOVIRUS (CMV) DEFECTS (NEONATE AND INFANT) • CHRONIC NEONATAL LUNG • DELAYED TRANSITION • ABNORMAL HEAD SHAPE DISEASE • DRUG EXPOSED INFANT • ABO-INCOMPATIBILITY • COMNGENITAL PARVOVIRUS B 19 • ERYTHROBLASTOSIS FETALIS • ACNE - INFANTILE • CONGENITAL CANDIDIASIS • EXAMINATION OF THE NEWBORN • ALIGILLE SYNDROME • CONGENITAL CATARACTS • EXCHANGE TRANSFUSION • AMBIGUOUS GENITALIA • CONGENITAL CMV • EYE MISALIGNMENT • AMNIOTIC FLUID ASPIRATION • CONGENITAL COXSACKIEVIRUS • FETAL HYDRONEPHROSIS • ANAL ATRESIA • CONGENITAL DYSERYTHROPOIETIC • FETOMATERNAL TRANSFUSION • ANEMIA - SEVERE AT BIRTH ANEMIA • FFEDS/FLUIDS - PRETERM • ANEMIA OF PREMATURITY • CONGENITAL EMPHYSEMA • FPIES(FOOD PROTEIN INDUCED • ANHYDRAMNIOS SEQUENCE • CONGENITAL GLAUCOMA ENTEROCOLITIES SYNDROME) • APGAR SCORE • CONGENITAL GOITER • GASTRO INTESTINAL REFLUX • APNEA OF PREMATURITY • CONGENITAL HEART BLOCK • GROUP B STREPTOCOCCUS • APT TEST • CONGENITAL HEPATIC FIBROSIS • HEMORRHAGIC DISEASE OF THE • ASPHYXIATING THORACIC DYSTRO- • CONGENITAL HEPATITIS B NEWBORN PHY (JEUNE SYNDROME) INFECTION • HEPATIC RUPTURE • ATELECTASIS • CONGENITAL HEPTITIS C • HIV • ATRIAL SEPTAL DEFECTS INFECTION • HYALINE MEMBRANE DISEASE • BARLOW MANEUVER • CONGENITAL HYDROCELE • HYDROCEPHALUS • BECKWITH-WIEDEMANN SYN- • CONGENITAL HYPOMYELINATING • HYDROPS FETALIS DROME • CONGENITAL HYPOTHYROIDISM • HYPOGLYCEMIA OF INFANCY • BENIGN FAMILIAL NEONATAL