bioRxiv preprint doi: https://doi.org/10.1101/669374; this version posted June 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Classification: Biological Sciences (Genetics) Title: Activation of a nerve injury transcriptional signature in airway-innervating sensory neurons after lipopolysaccharide induced lung inflammation Short Title: Nerve reprogramming after airway LPS Author Affiliation: Melanie Maya Kaelberer1*, Ana Isabel Caceres2*, Sven-Eric Jordt2 1 Department of Medicine, Duke University School of Medicine. MSRB-I, 203 Research Dr. Durham, NC 27710, USA 2 Department of AnesthesioloGy, Duke University School of Medicine. MSRB-III, 3 Genome Ct. Durham, NC 27710, USA * equal contribution Corresponding Author: Sven-Eric Jordt, Department of Anesthesiology, Duke University School of Medicine 3 Genome Ct. MSRB-III, Room 6122 Durham, NC 27710, USA. PO Box: 3094 MS27 Email:
[email protected] Keywords: jugular-nodose complex, lipopolysaccharide, lung inflammation, RNA sequencing 1 bioRxiv preprint doi: https://doi.org/10.1101/669374; this version posted June 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT: The lungs, the immune and nervous systems functionally interact to respond to respiratory environmental exposures and infections. The lungs are innervated by vagal sensory neurons of the jugular and nodose ganglia, fused together in smaller mammals as the jugular-nodose complex (JNC).