Characterization and Engineering of Novel Sucrose/Trehalose Synthases

Total Page:16

File Type:pdf, Size:1020Kb

Characterization and Engineering of Novel Sucrose/Trehalose Synthases Unlocking nature’s glycosylation potential: characterization and engineering of novel sucrose/trehalose synthases ir. Margo Diricks Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Academic year: 2016-2017 Promotor Prof. dr. Tom Desmet (Ghent University) Faculty of Bioscience engineering Department of Biochemical and Microbial Technology Centre for Synthetic Biology Coupure Links 653, 9000 Ghent – Belgium Dean Prof. dr. ir. Marc Van Meirvenne Rector Prof. dr. Anne De Paepe Examination committee Prof. dr. ir. Dirk Reheul (Ghent University, Chairman) Prof. dr. ir. Matthias D’hooghe (Ghent University, Secretary) Prof. dr. ir. Bartel Vanholme (Ghent University, VIB) Prof. dr. ir. Wim Van den Ende (KU Leuven) Prof. dr. ir. Yves Briers (Ghent University) Prof. dr. Tom Desmet (Ghent University) To refer to this thesis Diricks, M. (2017) Unlocking nature’s glycosylation potential: characterization and engineering of novel sucrose/trehalose synthases. PhD thesis, Faculty of Bioscience Engineering, Ghent University, Ghent. Acknowledgements This work was supported by the Special Research Fund (BOF, doctoral scholarship) of Ghent University as well as the European Commission FP7-project ‘SuSy’ (grant nr. 613633). Cover illustration Designed by Margo Diricks ISBN 978-94-6357-018-3 Copyright © 2017 by Margo Diricks. All rights reserved. The author and the promotor give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Table of contents List of abbreviations .............................................................................................................. 1 Introduction ........................................................................................................................... 3 CHAPTER 1: Literature review .............................................................................................. 9 1 Carbohydrate active enzymes ....................................................................................10 1.1 Introduction .........................................................................................................10 1.2 Classification ......................................................................................................11 1.3 Glycosyltransferases ..........................................................................................11 1.4 GT4 family ..........................................................................................................15 2 Sucrose Synthase ......................................................................................................16 2.1 Reaction, classification and mechanism .............................................................16 2.2 Substrate promiscuity .........................................................................................17 2.3 Structure .............................................................................................................17 2.4 Factors influencing expression and activity .........................................................19 2.5 Biotechnological applications ..............................................................................21 3 Construction of phylogenetic trees .............................................................................22 4 Enzyme engineering ..................................................................................................24 4.1 Engineering substrate specificity .........................................................................25 4.2 Engineering protein stability ................................................................................30 4.3 Engineering of GTs: case studies .......................................................................32 5 Supplementary materials ...........................................................................................35 CHAPTER 2: Identification and characterization of novel bacterial SuSy enzymes ..............39 1 Abstract .....................................................................................................................40 2 Introduction ................................................................................................................41 3 Materials and methods ...............................................................................................42 3.1 Materials .............................................................................................................42 3.2 Phylogenetic analysis .........................................................................................42 3.3 Cloning of novel SuSy genes in a constitutive expression system.......................45 3.4 Construction of truncation mutants of SuSyAc ....................................................47 3.5 Enzyme production and purification ....................................................................47 3.6 Enzyme assays...................................................................................................48 3.7 SDS-PAGE analysis ...........................................................................................50 3.8 Western blot analysis ..........................................................................................50 3.9 Effect of pH, temperature and divalent cations on SuSy activity ..........................51 3.10 Nucleotide sequence accession numbers ...........................................................51 3.11 Statistical analysis ..............................................................................................51 4 Results and discussion ..............................................................................................52 4.1 Phylogenetic and taxonomic analysis of prokaryotic SuSy sequences ................52 4.2 Recombinant expression of novel prokaryotic SuSys ..........................................54 4.3 Effect of pH, temperature and divalent cations on the activity of novel prokaryotic SuSys ...........................................................................................................................55 4.4 Kinetic properties and substrate specificity of novel prokaryotic SuSys ...............57 4.5 Production of UDP-glucose with SuSyAc ............................................................59 4.6 Truncation mutants of SuSyAc ............................................................................60 4.7 Genomic organization of SuSy genes in bacteria ................................................61 4.8 Phosphorylation of prokaryotic SuSys .................................................................64 5 Conclusions ...............................................................................................................65 6 Supplementary materials ...........................................................................................67 CHAPTER 3: Improving the affinity of a bacterial SuSy for the nucleotide acceptor UDP .....77 1 Abstract .....................................................................................................................78 2 Introduction ................................................................................................................79 3 Materials and methods ...............................................................................................79 3.1 Amino acid distribution ........................................................................................79 3.2 Site-directed mutagenesis ..................................................................................80 3.3 Enzyme production and purification ....................................................................81 3.4 Characterization of variant SuSys .......................................................................81 3.5 Coupled reactions ...............................................................................................81 3.6 Homology modeling ............................................................................................82 4 Results and discussion ..............................................................................................83 4.1 Nucleotide preference and its relation to the QN motif ........................................83 4.2 Mutational analysis of the QN motif .....................................................................85 4.3 Coupled reaction between SuSy and a C-glycosyltransferase ............................88 5 Conclusions ...............................................................................................................90 6 Supplementary materials ...........................................................................................91 CHAPTER 4: Driving the donor specificity of SuSy towards GalFru, for the efficient one-step production of UDP-galactose ................................................................................................97 1 Abstract .....................................................................................................................98 2 Introduction ................................................................................................................99 3 Materials and methods ............................................................................................. 100 3.1 Materials ..........................................................................................................
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • The Analysis for Alteration in Starch Biosynthesis Metabolism in a Japonica Rice Grain Mutant Which Does Not Accumulate Starch
    MOJ Proteomics & Bioinformatics Research Article Open Access The analysis for alteration in starch biosynthesis metabolism in a japonica rice grain mutant which does not accumulate starch Abstract Volume 7 Issue 5 - 2018 Rice grain‒filling is an important agronomic trait that contributes greatly to grain Weidong Xu,1,2 Chunhai Shi,1 Zhenzhen weight. A grain mutant from the japonica cultivar Nipponbare by mutagenesis with 1 1 3 ethyl methane sulfonate (EMS), which had no accumulation of starch granules in Cao, Fangmin Cheng, Jianguo Wu 1Department of Agronomy, Zhejiang University, China endosperm with a transparent liquid during grain filling stage, was used to analyze 2Jiaxing Academy of Agricultural Sciences Institute, China the caryopsis development and starch biosynthesis metabolism in present study. 3Department of Horticulture, Zhejiang A&F University, China Measurement of soluble substances in the liquid of developing endosperm showed that there was remarkably higher soluble sugar content in this no starch mutant. Correspondence: Chunhai Shi, Agronomy Department, Semi‒quantitative reverse transcription‒PCR (RT‒PCR) analysis of the starch‒ College of Agriculture and Biotechnology, Zhejiang University, synthesizing genes revealed that soluble starch synthase1 (SSS1) gene could be Yuhangtang Road 866, Hangzhou 310058, PR. China, Tel normally expressed in the mutant. Substantially lower expressions of starch branching +86 57188982691, Email [email protected] enzyme1 (SBE1), isoamylase1 (ISA1) and pullulanase (PUL) were detected in the no starch mutant compared with the wild type, whereas the expression of ADP‒glucose Received:‒ September 19, 2018 | Published: October 31, 2018 pyrophosphorylase large subunit 1 (AGPL1) and ADP‒glucose pyrophosphorylase small subunit 1 (AGPS1) were visibly increased.
    [Show full text]
  • Mslsc2001c04
    Metabolism MSLSC2001C04 Course Instructor Dr. Gautam Kumar Dr.Gautam Kr. Dept. of Life Sc. 1 Dr.Gautam Kr. Dept. of Life Sc. 2 Dr.Gautam Kr. Dept. of Life Sc. 3 Dr.Gautam Kr. Dept. of Life Sc. 4 • Cellulose is a major constituent of plant cell walls, providing strength and rigidity • Preventing the swelling of the cell and rupture of the plasma membrane • Plants synthesize more than 1011 metric tons of cellulose, making this simple polymer one of the most abundant compounds in the biosphere. • cellulose must be synthesized from intracellular precursors but deposited and assembled outside the plasma membrane. Dr.Gautam Kr. Dept. of Life Sc. 5 • Terminal complexes, also called rosettes, to be composed of six large particles arranged in a regular hexagon. • The outside surface of the plant plasma membrane in a freeze-fractured sample, viewed here with electron microscopy • Enzyme complex includes a catalytic subunit with eight transmembrane segments and several other subunits that are presumed to act in threading cellulose chains through the catalytic site and out of the cell, and in the crystallization of 36 cellulose strands into the paracrystalline microfibrils Rosettes Dr.Gautam Kr. Dept. of Life Sc. 6 • The complex enzymatic machinery that assembles cellulose chains spans the plasma membrane • UDP-glucose, in the cytosol and another part extending to the outside, responsible for elongating and crystallizing cellulose molecules in the extracellular space. • UDP-glucose used for cellulose synthesis is generated from sucrose produced during photosynthesis, by the reaction catalysed by sucrose synthase • Cellulose synthase spans the plasma Model for the structure of membrane and uses cytosolic UDP-glucose as Cellulose synthase.
    [Show full text]
  • Glucan Phosphorylase-Catalyzed Enzymatic Reactions Using Analog Substrates to Synthesize Non-Natural Oligo- and Polysaccharides
    catalysts Review α-Glucan Phosphorylase-Catalyzed Enzymatic Reactions Using Analog Substrates to Synthesize Non-Natural Oligo- and Polysaccharides Jun-ichi Kadokawa Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan; [email protected]; Tel.: +81-99-285-7743 Received: 9 October 2018; Accepted: 16 October 2018; Published: 19 October 2018 Abstract: As natural oligo- and polysaccharides are important biomass resources and exhibit vital biological functions, non-natural oligo- and polysaccharides with a well-defined structure can be expected to act as new functional materials with specific natures and properties. α-Glucan phosphorylase (GP) is one of the enzymes that have been used as catalysts for practical synthesis of oligo- and polysaccharides. By means of weak specificity for the recognition of substrates by GP, non-natural oligo- and polysaccharides has precisely been synthesized. GP-catalyzed enzymatic glycosylations using several analog substrates as glycosyl donors have been carried out to produce oligosaccharides having different monosaccharide residues at the non-reducing end. Glycogen, a highly branched natural polysaccharide, has been used as the polymeric glycosyl acceptor and primer for the GP-catalyzed glycosylation and polymerization to obtain glycogen-based non-natural polysaccharide materials. Under the conditions of removal of inorganic phosphate, thermostable GP-catalyzed enzymatic polymerization of analog monomers occurred to give amylose analog polysaccharides. Keywords: analog substrate; α-glucan phosphorylase; non-natural oligo- and polysaccharides 1. Introduction Oligo- and polysaccharides are widely distributed in nature and enact specific important biological functions in accordance with their chemical structures [1].
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Enzymatic Glycosylation of Small Molecules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Enzymatic Glycosylation of Small Molecules Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick- Field, Vanessa; Schiller, Alexander; Křen, Vladimir Published in: Chemistry : a European Journal DOI: 10.1002/chem.201103069 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., ... Křen, V. (2012). Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry : a European Journal, 18(35), 10786-10801. https://doi.org/10.1002/chem.201103069 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • TO Thermostable Sucrose Phosphorylase 20120924
    Thermostable sucrose phosphorylase Ghent Bio-Energy Valley, a consortium of research laboratories of Ghent University, is seeking partners interested in the industrial and enzymatic production of glycosides or glucose-1-phosphate at temperatures of 60°C or higher using a thermostable phosphorylase. Introduction Sucrose phosphorylase catalyses the reversible phosphorolysis of sucrose into α-glucose-1-phosphate and fructose. Because of the broad acceptor specificity of the enzyme, it can further be used for the production of a number of glycosylated compounds. At the industrial scale, such production processes are preferably run at 60°C or higher, mainly to avoid microbial contamination. Unfortunately, no sucrose phosphorylases are known yet which perform well at such high temperatures. Technology Researchers at Ghent University have identified a thermostable sucrose phosphorylase derived from the prokaryote Bifidobacterium adolescentis which performs well at 60°C or higher. The enzyme is active for at least 16h at 60°C when it is in the continuous presence of its substrate, and/or, when it is mutated at specific residues, and/or, when it is immobilized on a carrier or when it is immobilized by cross-linking so that it is part of a so-called “cross- linked enzyme aggregate (CLEA)”. Applications Enzymatic and/or recombinant methods to produce high value glycosides at elevated temperatures. Advantages • being able to produce glycosylated compounds at high temperatures avoids microbial contamination; • recycling of the immobilized biocatalyst in consecutive reactions increases the commercial potential. Status of development The sucrose phosphorylase of B. adolescentis was recombinantly expressed in E. coli and further purified. In addition, the enzyme was immobilized on an epoxy- activated enzyme carrier (Sepabeads EC-HFA) or was incorporated in a CLEA or was mutated to obtain enzyme variants.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity
    Int. J. Mol. Sci. 2012, 13, 11333-11342; doi:10.3390/ijms130911333 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article An Imprinted Cross-Linked Enzyme Aggregate (iCLEA) of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity Karel De Winter, Wim Soetaert and Tom Desmet * Centre of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: [email protected] (K.D.W.); [email protected] (W.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-9-2649-920; Fax: +32-9-2646-032. Received: 28 August 2012; in revised form: 5 September 2012 / Accepted: 5 September 2012 / Published: 11 September 2012 Abstract: The industrial use of sucrose phosphorylase (SP), an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA). In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate. To obtain proof of concept, SP was imprinted with α-glucosyl glycerol and subsequently cross-linked with glutaraldehyde. As a consequence, the enzyme’s specific activity towards glycerol as acceptor substrate was increased two-fold while simultaneously providing an exceptional stability at 60 °C.
    [Show full text]
  • New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
    Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு.
    [Show full text]
  • Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community During the Anaerobic Digestion of Hydrolyzed Corncob
    energies Article Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob Luz Breton-Deval 1 , Ilse Salinas-Peralta 1 , Jaime Santiago Alarcón Aguirre 2, Belkis Sulbarán-Rangel 2,* and Kelly Joel Gurubel Tun 2,* 1 Catedras Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; [email protected] (L.B.-D.); [email protected] (I.S.-P.) 2 Department of Water and Energy, University of Guadalajara Campus Tonalá, Tonalá 45425, Mexico; [email protected] * Correspondence: [email protected] (B.S.-R.); [email protected] (K.J.G.T.); Tel.: +52-33-2000-2300 (K.J.G.T.) Abstract: Maize forms the basis of Mexican food. As a result, approximately six million tons of corncob are produced each year, which represents an environmental issue, as well as a potential feedstock for biogas production. This research aimed to analyze the taxonomic and functional shift in the microbiome of the fermenters using a whole metagenome shotgun approach. Two strategies were used to understand the microbial community at the beginning and the end of anaerobic digestion: (i) phylogenetic analysis to infer the presence and coverage of clade-specific markers to assign taxonomy and (ii) the recovery of the individual genomes from the samples using the binning of the assembled scaffolds. The results showed that anaerobic digestion brought some noticeable changes and the main microbial community was composed of Corynebacterium variable, Desulfovibrio desulfuricans, Vibrio furnissii, Shewanella spp., Actinoplanes spp., Pseudoxanthomonas spp., Saccharomonospora azurea, Citation: Breton-Deval, L.; Agromyces spp., Serinicoccus spp., Cellulomonas spp., Pseudonocardia spp., Rhodococcus rhodochrous, Salinas-Peralta, I.; Alarcón Aguirre, Sphingobacterium spp.
    [Show full text]