Development of Bait for the Management of Coffee Bean Weevil, Araecerus Fasciculatus in Stored Cocoa

Total Page:16

File Type:pdf, Size:1020Kb

Development of Bait for the Management of Coffee Bean Weevil, Araecerus Fasciculatus in Stored Cocoa Asian Research Journal of Agriculture 8(3): 1-11, 2018; Article no.ARJA.40496 ISSN: 2456-561X Development of Bait for the Management of Coffee Bean Weevil, Araecerus fasciculatus in Stored Cocoa A. Eduku1, B. K. Maalekuu1, P. D. Kaledzi1 and P. K. Tandoh1* 1Department of Horticulture, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Authors’ contributions This work was carried out in collaboration between all authors. Author AE designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors BKM and PDK managed the analyses of the study. Author PKT managed the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/ARJA/2018/40496 Editor(s): (1) Rusu Teodor, Department of Technical and Soil Sciences,University of Agricultural Sciences and Veterinary Medicine Cluj- Napoca, Romania. Reviewers: (1) Hanife Genc, Canakkale Onsekiz Mart University, Turkey. (2) R. P. Soundararajan, Tamil Nadu Agricultural University, Tamil Nadu, India. Complete Peer review History: http://www.sciencedomain.org/review-history/24007 Received 14th January 2018 Accepted 31st March 2018 Original Research Article th Published 7 April 2018 ABSTRACT An experiment was conducted at the Laboratory of the Horticulture Department of Kwame Nkrumah University of Science and Technology between January and March, 2012 within temperature and humidity ranges of 18–32°C and 63–85%, respectively. The purpose of the investigation was to develop an effective insecticidal cassava bait to control insect pests of cocoa in storage using Araecerus fasciculatus (De Geer) as model species. A completely randomized design was used for the study. It was conducted in a five-roomed glass cage of 60 cm x 60 cm x 200 cm with the backside made of a net to improve aeration in the cage. It was observed that A. fasciculatus preferred sun-dried chips to fresh chips, fermented dough, flour and cocoa beans and that soaking of sun-dried chips in brown sugar solution of 500 g per litre of water further enhanced the preference. Deltamost emerged superior to Fastrack and Confidor insecticides by registering 4–6 minutes of lethal time, 21–30 days persistence and attract-and-kill potential of 76.7 – 86.7% of infested bagged cocoa beans. However, cassava bait at 25% of Deltamost insecticide was at equal strength (p < 0.05) with the 50 and 75% of the label dosage and should be the obvious choice for the insecticidal cassava bait preparation. _____________________________________________________________________________________________________ *Corresponding author: E-mail: [email protected]; Eduku et al.; ARJA, 8(3): 1-11, 2018; Article no.ARJA.40496 Keywords: Semiochemicals; infestation; insecticidal; cage; persistence. 1. INTRODUCTION its depleting effect on the ozone layer [11]. On the other hand, the EPA proposed a ban or Cocoa (Theobroma cacao L.) is a cash crop of restrictive use of phosphine because it is highly huge economic significance in the world and the toxic and insects rapidly build resistance to it key raw material for chocolate manufacturing [1, [12]. Environmental concerns, chemical residues, 2]. It forms the major agricultural export insect resistance and worker safety issues have commodity for several producing countries in increased interest in alternative, safer, selective West and Central Africa, such as Cote d'Ivoire, and ecologically acceptable toxophores and Ghana, Nigeria and Cameroon [3]. Côte d’Ivoire, novel methods of application including the use of Ghana and Indonesia are the leading producers insecticidal baits [13]. Though dry cassava chips of cocoa in the world in terms of land area under have been found to be preferred by a primary production and production volumes. Ghana plays pest of stored cocoa, Araecerus fasciculatus De a major role as the second largest cocoa Geer Boateng and Chijindu, 2008, much work producing country with production suddenly has not been done in the use of baits to control rising to about 540 000 metric tonnes during the insect pests of cocoa beans as well as 2003/2004 crop year and reaching 720, 000 using cassava as an attractant in insecticidal metric tonnes which constituted 20.7% of world bait formulation [14]. The purpose of production as at the end of 2009. Its production this investigation, therefore, was to was reported to have reached 1.0 million metric develop an effective insecticidal cassava bait to tonnes by end of 2011 according to Ghana control insect pests of cocoa in storage using Cocoa Board [4]. In Ghana, cocoa has been A. fasciculatus as model species with the labelled ‘the golden pod’ owing to the pivotal role following specific objectives: 1. determine the it plays in the nation’s economy. It is cultivated cassava preparation that is most preferred on about 1.5 million hectares of land by some by A. fasciculatus; 2. determine the effect of 800,000 families in six out of the ten regions. It is brown sugar on the preference of Araecerus to cultivated almost exclusively by small-holder cassava; 3. identify the most effective farmers with average farm sizes of about 4.0 ha chemical for the cassava bait preparation and and mean production yield of 246.4 kg/ha [5,6]. 4.determine the efficacy of insecticidal cassava Ghana’s cocoa sector employs millions of people bait in controlling Araecerus infestation of both formally and informally because it is the bagged cocoa beans under cage. predominant farming activity. The cocoa sector alone contributed up to 22.4 percent of the total 2. MATERIALS AND METHODS foreign exchange earnings of Ghana during the 2002 season. According to Dwinger (2010), 2.1 Experimental Site cocoa contributed nine (9) percent of Ghana’s gross domestic product (GDP) in 2008 [7].This The experiment was conducted at the laboratory contributed sixty-three (63) percent of the entire of the Horticulture Department of the Kwame foreign export earnings accrued from the Nkrumah University of Science and Technology agricultural sector. According to Osei (2007), a between January and March, 2012. The good quality cocoa is one devoid of insect experiment was performed within temperature infestation and high levels of chemical residues and humidity ranges of 18-32°C and 63-85% in the produce [8]. The sale of cocoa that has respectively. any of these attributes may suffer outright rejection by the buyer or may be subjected to 2.2 Experimental Cage and Study Design high arbitration cost to the country. Bateman (2010) reported that insect infestation and A transparent glass cage of 60 cm x 60 cm x 200 chemical residues in cocoa beans are major cm was constructed with the backside of the challenges confronting the cocoa industry in cage made of a net to improve aeration. The top Ghana [9] and according to Jonfia-Essien et al. had four breaks at 40 cm interval where partition [10], fumigating cocoa beans with methyl glasses inserted created five equal cabins. Each bromide and phosphine is the current method of cabin had a sliding door on the front side and the controlling insect pests of stored cocoa. The use base was made of a transparent glass. The of methyl bromide however, was banned in various set up were laid out using a completely developed countries in 2005 and it was to take randomized design. effect in developing countries in 2015 because of 2 Eduku et al.; ARJA, 8(3): 1-11, 2018; Article no.ARJA.40496 2.3 Culturing of Experimental Insects and the cocoa used were counted. This was repeated three times by randomizing the Culture of Araecerus fasciculatus (De Geer) was arrangement of the treatments in the cage and raised from a field strain of parent stock obtained the number of A. fasciculatus attracted to each from Ashanti Bekwai. An insect haven was treatment 24 hours after introduction into the created in a garden behind the Quality Control cage was recorded. (COCOBOD) office by drying cassava chips on a raised platform and any A. fasciculatus that was 2.4.2 Experiment to determine the attracted was captured with a pooter. The culture preference of A. fasciculatus to dry was prepared using ten Kilner jars with dry cassava chips and chips immersed in cassava chips sterilized in an oven at a brown sugar solution temperature of 60°C for 24 hours. The moisture content of the sterilized chips was reduced to 9 A solution was prepared using 500 g of brown %, measured using an Aqua Boy. The jars were sugar and one litre of water. One kilogram of dry filled with the sterilized cassava chips to three- chips was soaked in the solution and the mixture quarters full before introducing the insect. The was transferred into a black polyethylene bag insects were secured in the jars with meshed and kept for 12 hours. A comparison was made covers to provide adequate aeration in the by placing 300 g each of dry cassava chips, bottles. The jars were then placed on plastic soaked chips and cocoa as the control in the trays containing industrial oil to prevent cage and twenty day-old A. fasciculatus were contamination of the culture by other insects. The introduced. The experiment was repeated three insects were sieved off 12 days after introduction times by randomizing the arrangement of the and the contents kept for fresh insect treatments in the cage. The number of immergence. A. fasciculatus attracted to dry cassava chips, chips immersed in brown sugar solution and 2.4 Data Collected cocoa beans 24 hours after introduction into the cage were recorded. The following data were collected during the study; 2.4.3 Preparation of insecticidal cassava bait 2.4.1 Evaluation of the preference of The cassava bait was prepared using 500 g of A.
Recommended publications
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • AKPAH EDUKU.Pdf
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY COLLEGE OF AGRICULTURE AND NATURAL RESOURCES FACULTY OF AGRICULTURE DEPARTMENT OF HORTICULTURE LABORATORY STUDIES TO DEVELOP CASSAVA BAIT TO CONTROL INSECT INFESTATION OF COCOA BEANS USING COFFEE BEAN WEEVIL, ARAECERUS FASCICULATUS (DE GEER) (COLEOPTERA; ANTHRIBIDAE), AS MODEL SPECIES. BY AKPAH EDUKU JUNE, 2014 i LABORATORY STUDIES TO DEVELOP CASSAVA BAIT TO CONTROL INSECT INFESTATION OF COCOA BEANS USING COFFEE BEAN WEEVIL, ARAECERUS FASCICULATUS (DE GEER) (COLEOPTERA; ANTHRIBIDAE), AS MODEL SPECIES. BY AKPAH EDUKU THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF PHILOSOPHY (M. PHIL.) POST-HARVEST TECHNOLOGY JUNE, 2014 ii DECLARATION I, Akpah Eduku, hereby declare that, except for specific references, which have been duly acknowledged, this project is the result of my own research and it has not been submitted either in part or in whole for any other degree elsewhere. AKPAH EDUKU ……………………….. …………………… Student No. PG418610 Signature Date Dr. B. K. MAALEKUU ……………………….. …………………….. (Main Supervisor) Signature Date Ms. P. D. KALEDZI ….…………………… …………………….. (Co – Supervisor) Signature Date Dr. BEN KWAKU BANFUL ……………………….. …………………….. (Head of Department) Signature Date i DEDICATION After rains comes sunshine, After darkness comes the glorious dawn. There is no joy without its admixture of misfortune, There is no misfortune without its alloy of joy. Behind the ugly terrible mask, Lies the beautiful countenance of prosperity. So, tear the mask. Awolowo (Nigerian) To God be the glory for the great things he has done. This work is dedicated to Him, The Almighty God, and then to my only daughter, Lucina Akpah.
    [Show full text]
  • Biology and Control of Araecerus Levipennis Jordan ( Coleoptera: Anthribidae )X
    138 Proceedings, Hawaiian Entomological Society Biology and Control of Araecerus levipennis Jordan ( Coleoptera: Anthribidae )x Martin Sherman and Minoru Tamashiro2 UNIVERSITY OF HAWAII AGRICULTURAL EXPERIMENT STATION HONOLULU, HAWAII (Presented at the meeting of December 12, 1953) Koa haole, Leucaenaglauca (L.) Bentham, is a leguminous plant introduced into Hawaii prior to 1888 (Takahashi and Ripperton, 1949). Because of its high protein content, it is a valuable forage crop and many ranches have spread its seed over rangeland. In addition to this important use, it is of some value as a raw material in the manufacture of Hawaiian seed jewelry. During 1954 a small beetle, previously unknown in Hawaii, was found to be damaging a large percentage of the seed of koa haole (Ford and Chilson, 1955; Sherman, 1955). Specimens were sent to the U.S. National Museum and were identified as Araecerus sp., evidently simulatus Gyllenhal. However, additional specimens sent to Dr. H. E. Karl Jordan were identified by him as Araecerus levipennis Jordan. This species was described from the Philippines and Cochin China (Jordan, 1924). In a letter to Dr. D. Elmo Hardy of the University of Hawaii3 Dr. Jordan wrote, "It is a near relative of Araecerus simulatus Gyllenh. 1833 (Java), which is a species of very wide distribution in the Oriental Region and varying much in size and pattern. .. Araecerus levipennis differs from the four other species of Araecerus known from the Hawaiian Islands in the following combination of distinctions: club of antennae almost sym metrical; upper side pale tawny (ochraceous) with diffuse grey spots, im pressed stripes, and their punctures distinct only at sides and bases, absent dorsally from before middle to apex of elytra, which gives the elytra a smooth appearance; legs pale testaceous, tibia without dark markings; anterior tibia of o71 hairy on underside, without teeth; sutural area sometimes dark (as happens also in A.
    [Show full text]
  • Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED
    Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED WITH ANNONA SPP. IN THE NEOTROPICS J. E. PEÑA1 AND F. D. BENNETT2 1University of Florida, Tropical Research and Education Center, 18905 S.W. 280th Street, Homestead, FL 33031 2University of Florida, Department of Entomology and Nematology, 970 Hull Road, Gainesville, FL 32611 ABSTRACT Two hundred and ninety-six species of arthropods are associated with Annona spp. The genus Bephratelloides (Hymenoptera: Eurytomidae) and the species Cerconota anonella (Sepp) (Lepidoptera: Oecophoridae) are the most serious pests of Annona spp. Host plant and distribution are given for each pest species. Key Words: Annona, arthropods, Insecta. RESUMEN Doscientas noventa y seis especies de arthrópodos están asociadas con Annona spp. en el Neotrópico. De las especies mencionadas, el género Bephratelloides (Hyme- noptera: Eurytomidae) y la especie Cerconota anonella (Sepp) (Lepidoptera: Oecopho- ridae) sobresalen como las plagas mas importantes de Annona spp. Se mencionan las plantas hospederas y la distribución de cada especie. The genus Annona is confined almost entirely to tropical and subtropical America and the Caribbean region (Safford 1914). Edible species include Annona muricata L. (soursop), A. squamosa L. (sugar apple), A. cherimola Mill. (cherimoya), and A. retic- ulata L. (custard apple). Each geographical region has its own distinctive pest fauna, composed of indigenous and introduced species (Bennett & Alam 1985, Brathwaite et al. 1986, Brunner et al. 1975, D’Araujo et al. 1968, Medina-Gaud et al. 1989, Peña et al. 1984, Posada 1989, Venturi 1966). These reports place emphasis on the broader as- pects of pest species. Some recent regional reviews of the status of important pests and their control have been published in Puerto Rico, U.S.A., Colombia, Venezuela, the Caribbean Region and Chile (Medina-Gaud et al.
    [Show full text]
  • The Biology, Host Range, Parasites, and Hyperparasites of Koa Seed Insects in Hawaii: a Review
    Vol. 24, Nos. 2 & 3, October 15,1983 317 The Biology, Host Range, Parasites, and Hyperparasites of Koa Seed Insects in Hawaii: a Review JOHN D. STEIN1 ABSTRACT The biology and host range of koa seed insects, their parasites, and hyperparasites in Hawaii are reviewed. The information reported may be applicable to other native or introduced legumes because of the wide hosthnst rangeranopt ofrtf a fewfi»w ofnf thetht* insects.inc^Wc Koa, Acacia koa Gray, is considered the most valuable native timber species in Hawaii. Pure stands of koa cover approximately 7.5 thousand hectares (18.6 thousand acres) with an additional 172.4 thousand hectares (426 thousand acres) of koa-ohia mixture in the native forest ecosystems within the State. Selective logging has reduced the quality of koa to less desirable commercial grade trees. Since 1978, the Hawaii State Department of Land and Natural Resources has been replanting sites where koa once grew. The emphasis on reforestation of this high value hardwood has stimulated research by the Forest Service, U.S. Department of Agriculture, to select and propagate genetically superior trees. Progeny from these trees will then be used to establish viable seed orchards. Insects present a potentially serious threat to koa seed production. In a recent survey, I found that up to 86% of the seed was destroyed by insects, and three insects were responsible for 93% of the damage (Stein 1983). This review discusses the biology and host range of the koa seed insects, and lists their parasites. Previously published biological data for these insects were augmented with information from the Bernice P.
    [Show full text]
  • Micro-CT to Document the Coffee Bean Weevil, Araecerus Fasciculatus (Coleoptera: Anthribidae), Inside Field-Collected Coffee Berries (Coffea Canephora)
    insects Communication Micro-CT to Document the Coffee Bean Weevil, Araecerus fasciculatus (Coleoptera: Anthribidae), Inside Field-Collected Coffee Berries (Coffea canephora) Ignacio Alba-Alejandre 1 ID , Javier Alba-Tercedor 1 ID and Fernando E. Vega 2,* ID 1 Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, 18071 Granada, Spain; [email protected] (I.A.-A.); [email protected] (J.A.-T.) 2 Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA * Correspondence: [email protected]; Tel.: +1-301-504-5101 Received: 22 June 2018; Accepted: 10 August 2018; Published: 14 August 2018 Abstract: The coffee bean weevil, Araecerus fasciculatus (De Geer) (Coleoptera: Anthribidae), is a cosmopolitan insect with >100 hosts, and has been reported as a pest of stored coffee. During a study involving the coffee berry borer, we observed coffee bean weevils emerging from field-collected coffee berries and used micro-computerized tomography (micro-CT) scans to observe the insect inside the berry. Two eggs had eclosed inside the berry, resulting in observations of a newly eclosed adult beetle and a 5th instar larva, each feeding on one of the two seeds. This is the first time since 1775, when the insect was first described, that the insect has been observed inside a coffee berry. Keywords: coffee quality; insect biology; losses; stored coffee; stored product pest 1. Introduction The genus Araecerus Schönherr comprises ca. 75 species [1], with the coffee bean weevil, Araecerus fasciculatus (De Geer) (Coleoptera: Anthribidae), being the most economically important. Chittenden [2,3] coined the name coffee bean weevil and Valentine [1] has published a succinct account on the controversy involving the many different scientific names used for the insect.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Eco-Climatic Assessment of the Potential Establishment of Exotic Insects in New Zealand
    Eco-climatic assessment of the potential establishment of exotic insects in New Zealand A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Lora Peacock Lincoln University 2005 Contents Abstract of a thesis submitted in partial fulfillment of the requirements for the Degree of PhD Eco-climatic assessment of the potential establishment of exotic insects in New Zealand Lora Peacock To refine our knowledge and to adequately test hypotheses concerning theoretical and applied aspects of invasion biology, successful and unsuccessful invaders should be compared. This study investigated insect establishment patterns by comparing the climatic preferences and biological attributes of two groups of polyphagous insect species that are constantly intercepted at New Zealand's border. One group of species is established in New Zealand (n = 15), the other group comprised species that are not established (n = 21). In the present study the two groups were considered to represent successful and unsuccessful invaders. To provide background for interpretation of results of the comparative analysis, global areas that are climatically analogous to sites in New Zealand were identified by an eco­ climatic assessment model, CLIMEX, to determine possible sources of insect pest invasion. It was found that south east Australia is one of the regions that are climatically very similar to New Zealand. Furthermore, New Zealand shares 90% of its insect pest species with that region. South east Australia has close trade and tourism links with New Zealand and because of its proximity a new incursion in that analogous climate should alert biosecurity authorities in New Zealand.
    [Show full text]
  • Stored Grain Pests
    STORED GRAIN PESTS In India, post-harvest losses caused by unscientific storage, insects, rodents, micro- organisms etc., account for about 10 per cent of total food grains. The major economic loss caused by grain infesting insects is not always the actual material they consume, but also the amount contaminated by them and their excreta which make food unfit for human consumption. About 500 species of insects have been associated with stored grain products. Nearly 100 species of insect pests of stored products cause economic losses Storage insect pests are categorized into two types viz. • Primary storage pests : Internal and External feeders • Secondary storage pests Primary storage pests: Insects that damages sound grains are primary storage pests Common name Pest Family Order Internal Feeders Rice weevil Sitophilus oryzae, Curculionidae Coleoptera S. zeamais, S. granarius Lesser grain borer Rhyzopertha dominica Bostrychidae Coleoptera Angoumois grain moth Sitotroga cerealella Gelechiidae Lepidoptera Pulse beetle Callosobruchus chinensis, Bruchidae Coleoptera C. maculatus Cigarette beetle Lasioderma sericorne Anobiidae Coleoptera Drug store beetle Stegobium paniceum Anobiidae Coleoptera Tamarind Beetle Pachymeres gonagra Bruchidae Coleoptera Sweet Potato weevil Cylas formicarius Apionidae Coleoptera Potato tuber moth Phthorimoea operculella Gelechiidae Lepidoptera Arecanut beetle Araecerus fasciculatus Anthribidae Coleoptera External Feeders Red flour beetle Tribolium castaneum, Tenebrionidae Coleoptera Tribolium confusum Indian meal
    [Show full text]
  • Die Rüsselkäfer (Coleoptera, Curculionoidea) Der Schweiz – Checkliste Mit Verbreitungsangaben Nach Biogeografischen Regionen
    MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 83: 41–118, 2010 Die Rüsselkäfer (Coleoptera, Curculionoidea) der Schweiz – Checkliste mit Verbreitungsangaben nach biogeografischen Regionen CHRISTOPH GERMANN Natur-Museum Luzern, Kasernenplatz 6, 6003 Luzern und Naturhistorisches Museum der Burger ge - meinde Bern, Bernastrasse 15, 3006 Bern; Email: [email protected] The weevils of Switzerland – Checklist (Coleoptera, Curculionoidea), with distribution data by bio - geo graphic regions. – A checklist of the Swiss weevils (Curculionoidea) including distributional pat- terns based on 6 bio-geographical regions is presented. Altogether, the 1060 species and subspecies out of the 10 families are composed of 21 Anthribidae, 129 Apionidae, 3 Attelabidae, 847 Cur cu lio - ni dae, 7 Dryophthoridae, 9 Erirhinidae, 13 Nanophyidae, 3 Nemonychidae, 3 Raymondionymidae, and 25 Rhynchitidae. Further, 13 synanthropic, 42 introduced species as well as 127 species, solely known based on old records, are given. For all species their synonymous names used in Swiss litera- ture are provided. 151 species classified as doubtful for the Swiss fauna are listed separately. Keywords: Curculionoidea, Checklist, Switzerland, faunistics, distribution EINLEITUNG Rüsselkäfer im weiteren Sinn (Curculionoidea) stellen mit über 62.000 bisher beschriebenen Arten und gut weiteren 150.000 zu erwartenden Arten (Oberprieler et al. 2007) die artenreichste Käferfamilie weltweit dar. Die ungeheure Vielfalt an Arten, Farben und Formen oder verschiedenartigsten Lebensweisen und damit ein - her gehenden Anpassungen fasziniert immer wieder aufs Neue. Eine auffällige Gemein samkeit aller Rüsselkäfer ist der verlängerte Kopf, welcher als «Rostrum» (Rüssel) bezeichnet wird. Rüsselkäfer sind als Phyto phage stets auf ihre Wirts- pflanzen angewiesen und folgen diesen bei uns von Unter wasser-Biotopen im pla- naren Bereich (u.a.
    [Show full text]