Physiological, Biochemical and Behavioural Responses of Freshwater Crayfish (Paranephrops Zealandicus) to Hypoxia and Water Nutrients

Total Page:16

File Type:pdf, Size:1020Kb

Physiological, Biochemical and Behavioural Responses of Freshwater Crayfish (Paranephrops Zealandicus) to Hypoxia and Water Nutrients Physiological, biochemical and behavioural responses of freshwater crayfish (Paranephrops zealandicus) to hypoxia and water nutrients A thesis submitted in partial fulfilment of the degree of Master of Science in Zoology at the University of Canterbury by Rebecca Broughton University of Canterbury 2015 1 Table of Contents Abstract 9 1. General introduction 12 1.1. Context 12 1.1.1. Eutrophication: Causes and prevalence 12 1.1.2. Hypoxia: Causes and impacts 15 1.1.3. New Zealand freshwater crayfish 17 1.2. Background 18 1.2.1. Physiological responses of freshwater crayfish to environmental stressors 18 1.2.2. Biochemical responses of freshwater crayfish to hypoxia and high nutrients 20 1.2.3. Behavioural responses of freshwater crayfish to hypoxia 22 1.3. Previous physiological research on Paranephrops zealandicus 25 1.4. Aims 25 2. General methods 28 2.1. Collection and maintenance 28 2.2. Metabolic rate 28 2.2.1. Respirometry types 30 2.3. Ammonia and nitrite 31 2.4. Measurement of heart rate 32 2.5. Haemolymph collection, analysis and storage 33 2.5.1. Haemolymph CO2, pH, and PO2 samples 33 2.5.2. Tissue collection and storage 34 2.6. Biochemical analysis of tissues 34 2.6.1. Tissue preparation 34 2.6.2. Tissue analysis 35 3. Oxygen consumption and heart rate responses of Paranephrops zealandicus to hypoxia and increased nutrients 38 3.1. Introduction 38 3.2. Methods and Materials 41 2 3.2.1. Physiological responses to hypoxia under progressive closed box respirometry 41 3.2.2. Physiological responses to hypoxia under semi-closed box respirometry 42 3.2.3. Physiological responses to hypoxia and/or high nutrients under prolonged flow-through respirometry 42 3.2.4. Data analysis and statistical methods 43 3.3. Results 44 3.3.1. Physiological responses to hypoxia under progressive closed box respiromentry 44 3.3.2. Physiological responses to hypoxia under semi closed box respirometry 52 3.3.3. Physiological responses to hypoxia and/or high nutrients under prolonged flow -through respirometry 54 3.4. Discussion 60 3.4.1. Physiological responses to hypoxia- oxygen consumption 61 3.4.2. Physiological responses to hypoxia- heart rate 63 3.4.3. Physiological responses to severe hypoxia and high nutrients- nitrite 66 3.4.4. Physiological responses to severe hypoxia and high nutrients- ammonia 67 3.5. Summary 68 4. Biochemical responses of Paranephrops zealandicus to hypoxia and increased nutrients 71 4.1. Introduction 71 4.2. Methods and Materials 73 4.2.1. Haemolymph parameters 73 4.2.2. Glucose and lactate concentrations 74 4.2.3. Data analysis and statistical methods 75 4.3. Results 76 4.3.1. Haemolymph parameters 76 4.3.2. Lactate and Glucose 78 4.4. Discussion 82 4.4.1. Haemolymph gases 82 4.4.2. Lactate 84 4.4.3. Glucose 85 4.5. Summary 88 5. Behavioural responses of freshwater crayfish Paranephrops zealandicus to hypoxia. 90 5.1. Introduction 90 3 5.2. Methods and materials 92 5.2.1. Avoidance test chamber 93 5.2.2. Experimental design of avoidance experiments 96 5.2.3. Emersion test chamber 98 5.2.4. Experimental design of emersion experiments 99 5.2.5. Data analysis and statistical methods 100 5.3. Results 100 5.3.1. Avoidance 100 5.3.2. Emergence 102 5.4. Discussion 104 5.4.1. Hypoxia avoidance 104 5.4.2. Emergence 106 5.5. Summary 109 6. General discussion 111 6.1. Aims and background 111 6.2. Physiological responses to hypoxia 111 6.2.1. Oxygen consumption responses to hypoxia 111 6.2.2. Heart rate responses to hypoxia 112 6.3. Biochemical responses to hypoxia 113 6.3.1. Haemolymph responses to hypoxia 113 6.3.2. Lactate responses to hypoxia 113 6.3.3. Glucose responses to hypoxia 114 6.3.4. Responses to nutrients 114 6.4. Behavioural responses 115 6.4.1. Avoidance 115 6.4.2. Emergence 115 6.5. Methodological considerations and issues highlighted for further study 116 6.5.1. Variability in responses 117 6.5.2. Behavioural methodologies 118 6.5.3. Future studies 119 Acknowledgements 122 References 124 Appendix 158 4 List of Figures Figure 2.1: Photograph of the respirometer 29 Figure 2.2: Diagrammatical representation of the respirometer 31 Figure 2.3: Photograph of the infrared sensor used in experiments sensor 32 Figure 3.1: Oxygen consumption values of P. zealandicus during progressive hypoxia 45 Figure 3.2: Raw oxygen consumption values of P. zealandicus during progressive hypoxia 46 Figure 3.3: Oxygen consumption patterns of individual P. zealandicus during progressive hypoxia 47 Figure 3.4: “Brokenstick” analysis of PCRIT using raw oxygen consumption values of P. zealandicus during progressive hypoxia 48 Figure 3.5: “Brokenstick” analysis of PCRIT using grouped oxygen consumption values of P. zealandicus during progressive hypoxia 49 Figure 3.6: Graphical analysis of PCRIT using raw oxygen consumption values of P. zealandicus during progressive hypoxia 50 Figure 3.7: Graphical analysis of PCRIT using grouped oxygen consumption values of P. zealandicus during progressive hypoxia 50 Figure 3.8: Raw heart rate values of P. zealandicus under progressive hypoxia 51 Figure 3.9: Heart rate values of P. zealandicus under progressive hypoxia 52 Figure 3.10: The effect of respirometry type on the oxygen consumption of P. zealandicus 53 Figure 3.11: Heart rate values of P. zealandicus comparing semi and closed-box respirometry 54 5 Figure 3.12: Oxygen consumption values for every hour of P. zealandicus over a six hour period at 155 mmHg 55 Figure 3.13: Oxygen consumption values for every hour of P. zealandicus over a six hour period at 30 mmHg 56 Figure 3.14: Oxygen consumption values for every hour of P. zealandicus over a six hour period at 10 mmHg 56 Figure 3.15: Oxygen consumption values for every hour of P. zealandicus over a six hour period at 10 mmHg and 20 mg mL-1 of sodium nitrite 57 Figure 3.16: Oxygen consumption values for every hour of P. zealandicus over a six hour period at 10 mmHg and 30 mg mL-1 of ammonia chloride 57 Figure 3.17: Oxygen consumption values of P. zealandicus over the six hours of each treatment type 58 Figure 3.18: Heart rate values for every hour of P. zealandicus over a six hour period of all treatment 59 Figure 3.19: Heart rate values of P. zealandicus over the six hours of each treatment type 60 Figure 4.1: The effect of PO2 and nutrients on the haemolymph PO2 of P. zealandicus 76 Figure 4.2: The effect of water partial oxygen concentration and nutrients on the haemolymph pH of P. zealandicus 77 Figure 4.3: The effect of water partial oxygen concentration and nutrients on the haemolymph partial carbon dioxide concentration of P. zealandicus 78 Figure 4.4: The effect of water partial oxygen concentration and nutrients on the haemolymph lactate of P. zealandicus 79 Figure 4.5: The effect of water partial oxygen concentration and nutrients on the haemolymph glucose of P. zealandicus 80 6 Figure 4.6: The effect of water partial oxygen concentration and nutrients on the tail muscle lactate of P. zealandicus 81 Figure 4.7: The effect of water partial oxygen concentration and nutrients on the tail muscle glucose of P. zealandicus 81 Figure 5.1: Diagrammatical representation of the avoidance chamber apparatus 94 Figure 5.2: Diagrammatical representation of the avoidance chamber apparatus. 95 Figure 5.3: Photograph showing the dye test and distinct separation of recti-linear flows on each side. 95 Figure 5.4: Diagrammatical representation of the emergence chamber apparatus. 98 Figure 5.5: The effect of side on the avoidance choice of P. zealandicus 101 Figure 5.6: The effect of water partial oxygen concentration combinations on the avoidance choice of P. zealandicus 101 Figure 5.7: Rate of water partial oxygen concentration decline during the progressive hypoxia emergence experiment 103 Figure 5.8: The time of emersion and partial water oxygen concentration of P. zealandicus under progressive, intermediate and extreme hypoxia 103 7 List of Tables Page Table 3.1 The weights and sample values of P. zealandicus used in the 43 measurement of MO2 and heart rate under prolonged exposures Table 4.1 The weights and sample values of P. zealandicus used in the 75 measurements of lactate and glucose concentrations Table 5.1 The experimental protocols used in the avoidance experiments 97 8 Abstract Hypoxia is a decline in water oxygen levels and is often caused by aquatic nutrient enrichment. It is recognised as one of the foremost environmental issues impacting and influencing species distribution. This population level effect is likely mediated by the physiological, biochemical and behavioural impacts associated with reduced oxygen. Most aquatic animals are able to maintain a constant oxygen uptake with small reductions in water oxygen, and are thus able to fuel the various processes driven by aerobic metabolism. However, as hypoxia persists or strengthens, regulation fails and aerobic metabolism is impaired leading to impacts such as the loss of acid-base homeostasis. The nutrient loading that often drives hypoxic episodes (through increased primary production) may impose additional stress that could also impact hypoxic responses and tolerance. The New Zealand freshwater crayfish Paranephrops zealandicus often inhabits streams that are in close proximity to farmland and are therefore prone to agricultural and pastoral run-off events. Consequently, crayfish will be faced with the challenge of energy homeostasis in conditions where aerobic capacity is compromised. The current study has investigated the physiological, biochemical and behavioural responses of P.
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Anti-Predator Behaviours of A
    CATHY R. SHAVE, COLIN R. TOWNSEND and TODD A. CROWL1 1 Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand. 1 Present address: College of Natural Resources, Utah State University, Logan, Utah, U.S.A. ANTI-PREDATOR BEHAVIOURS OF A FRESHWATER CRAYFISH (PARANEPHROPS ZEALANDICUS)TOANATIVE AND AN INTRODUCED PREDATOR ________________________________________________________________________________________________________________________________ Summary: The anti-predator behaviours of a New Zealand freshwater crayfish (Paranephrops zealandicus) to the native long-finned eel (Anguilla dieffenbachii)and the introduced brown trout (Salmo trutta)were investigated. Crayfish modified their behaviour in the presence of both trout and eels. However, a significantly greater number of defensive chela displays and swimming responses were made to eels than trout. Crayfish were able to use chemical cues from skin mucus to detect eels but not trout. Paranephrops zealandicus is able to make some appropriate defensive behavioural responses to the introduced brown trout as well as to its native predator, the long-finned eel. However, crayfish may be at greater risk from the introduced predator because of their apparent inability to detect trout using non-contact chemical cues. This may be a reflection of the different co-evolutionary histories crayfish have had with trout and eels. ________________________________________________________________________________________________________________________________ Keywords: anti-predator behaviour;
    [Show full text]
  • Effect of Feed on the Growth and Survival of Long Eyed Swimming
    Soundarapandian et al., 2:3 http://dx.doi.org/10.4172/scientificreports681 Open Access Open Access Scientific Reports Scientific Reports Research Article OpenOpen Access Access Effect of Feed on the Growth and Survival of Long Eyed Swimming Crab Podophthalmus vigil Fabricius (Crustacea: Decapoda) Soundarapandian P1*, Ravichandran S2 and Varadharajan D1 1Faculty of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Tamil Nadu, India 2Department of Zoology, Government Arts College, Kumbakonam, Tamil Nadu, India Abstract Food is considered to be the most potent factor affecting growth. Attempts to develop diets for culture of crabs have resulted in a variety of feeds. The absence of suitable feed either pellet or live food which can promote growth and survival is considered to be the most important lacuna in cultivation of crabs. So searching of economically viable feed to optimize the growth and survival in crabs are very much essential. In the present study the weight gain was higher in the crabs offered with Acetes sp. (86 g) followed by clam meat fed animals (47 g). The crabs fed with minimum amount of Acetes sp. (152 g) and maximum of clam meat (182 g). The FCR value was better in Acetes sp. (1.8) fed animal rather than clam meat fed animals (3.8). The survival rate was higher in Acetes sp. fed animals (92%) and lowest survival (72%) was observed in animals fed with clam meat. The survival was reasonable for both the feeds. But higher survival rate was reported in the animals fed with Acetes sp. than that of clam meat.
    [Show full text]
  • Circadian Clocks in Crustaceans: Identified Neuronal and Cellular Systems
    Circadian clocks in crustaceans: identified neuronal and cellular systems Johannes Strauss, Heinrich Dircksen Department of Zoology, Stockholm University, Svante Arrhenius vag 18A, S-10691 Stockholm, Sweden TABLE OF CONTENTS 1. Abstract 2. Introduction: crustacean circadian biology 2.1. Rhythms and circadian phenomena 2.2. Chronobiological systems in Crustacea 2.3. Pacemakers in crustacean circadian systems 3. The cellular basis of crustacean circadian rhythms 3.1. The retina of the eye 3.1.1. Eye pigment migration and its adaptive role 3.1.2. Receptor potential changes of retinular cells in the electroretinogram (ERG) 3.2. Eyestalk systems and mediators of circadian rhythmicity 3.2.1. Red pigment concentrating hormone (RPCH) 3.2.2. Crustacean hyperglycaemic hormone (CHH) 3.2.3. Pigment-dispersing hormone (PDH) 3.2.4. Serotonin 3.2.5. Melatonin 3.2.6. Further factors with possible effects on circadian rhythmicity 3.3. The caudal photoreceptor of the crayfish terminal abdominal ganglion (CPR) 3.4. Extraretinal brain photoreceptors 3.5. Integration of distributed circadian clock systems and rhythms 4. Comparative aspects of crustacean clocks 4.1. Evolution of circadian pacemakers in arthropods 4.2. Putative clock neurons conserved in crustaceans and insects 4.3. Clock genes in crustaceans 4.3.1. Current knowledge about insect clock genes 4.3.2. Crustacean clock-gene 4.3.3. Crustacean period-gene 4.3.4. Crustacean cryptochrome-gene 5. Perspective 6. Acknowledgements 7. References 1. ABSTRACT Circadian rhythms are known for locomotory and reproductive behaviours, and the functioning of sensory organs, nervous structures, metabolism and developmental processes. The mechanisms and cellular bases of control are mainly inferred from circadian phenomenologies, ablation experiments and pharmacological approaches.
    [Show full text]
  • Diversity and Abundance of Intertidal Crabs at the East Swamp- Managed Areas in Segara-Anakan Cilacap, Central Java, Indonesia
    Deutscher Tropentag, October 8-10, 2003, Göttingen “Technological and Institutional Innovations for Sustainable Rural Development” Diversity and Abundance of Intertidal Crabs at the East Swamp- Managed Areas in Segara-Anakan Cilacap, Central Java, Indonesia 1 2 2 MOH. HUSEIN SASTRANEGARA , HELEEN FERMON AND MICHAEL MÜHLENBERG 1 University of Jenderal Soedirman, Faculty of Biology, 53122 Purwokerto, Indonesia, e-mail: [email protected] 2 Georg August Universität Göttingen, Centre for Nature Conservation, 37075 Göttingen, Germany, e-mail: [email protected] 2 Georg August Universität Göttingen, Centre for Nature Conservation, 37075 Göttingen, Germany, e-mail: [email protected] Abstract Mangrove forests possess a high diversity and abundance of crabs in Central Java. The conservation of mangrove forests into prawn ponds causes depletion of supply of river sediments and loss of property. The main objective of this study is to compare the diversity and abundance of intertidal crabs in undisturbed, crab hunting, logging and prawn pond areas that were different in percent mangrove canopy covers and percent sediment textures. In each area, two transect lines were installed to analyse the percent mangrove canopy cover, and also the percent sediment texture comparing to trilinier plot. In total, 16,353 intertidal crab individuals in 13 species were sampled. Differences in observed number and estimated number of species (ACE, Chao1), as well as number of individuals, diversity indices and evenness between the four studied mangrove areas were all highly significant. Monthly fluctuation of intertidal crab diversity was more constant in the undisturbed area with a high mangrove coverage (90%) compared to the crab hunting, the logging and the prawn pond area with a coverage of 89%, 33% and 0%, respectively.
    [Show full text]
  • Rearing Enhancement of Ovalipes Trimaculatus (Crustacea: Portunidae
    www.nature.com/scientificreports OPEN Rearing enhancement of Ovalipes trimaculatus (Crustacea: Portunidae) zoea I by feeding on Artemia persimilis nauplii enriched with alternative microalgal diets Antonela Martelli1,3*, Elena S. Barbieri1,3, Jimena B. Dima2 & Pedro J. Barón1 The southern surf crab Ovalipes trimaculatus (de Haan, 1833) presents a high potential for aquaculture. In this study, we analyze the benefts of diferent dietary treatments on its molt success and ftness of larval stages. Artemia persimilis nauplii were enriched with monospecifc (Nannochloropsis oculata, Tetraselmis suecica, Dunaliella salina, Isochrysis galbana and Chaetoceros gracilis) and multispecifc (Mix) microalgal diets twice a day over a 48-h period. Mean total length (TL), growth instar number (I) and gut fullness rate (GFR) of nauplii showed signifcant diferences between dietary treatments at several sampling times, optimal results being observed in those providing Mix. Artemia nauplii grown under most experimental dietary treatments reached the capture size limit for Ovalipes trimaculatus zoea I (700 µm) within 24 h. After that time interval, Mix-enriched nauplii were amongst those with higher protein contents. Ovalipes trimaculatus zoea I fed on Artemia nauplii enriched during 24 h under diferent dietary treatments showed signifcant diferences in survival, inter-molt duration, molting success to zoea II and motility. Optimal results were observed in zoea I fed on Mix-enriched Artemia nauplii. This work not only represents a frst step towards the dietary optimization for O. trimaculatus zoeae rearing but also provides the frst results on the use of enriched A. persimilis. Portunid crabs stand out as highly valued resources for fsheries and aquaculture because of their export potential and high nutritional value1.
    [Show full text]
  • Historic Naturalis Classica, Viii Historic Naturalis Classica
    HISTORIC NATURALIS CLASSICA, VIII HISTORIC NATURALIS CLASSICA EDIDERUNT J. CRAMER ET H.K.SWANN TOMUS vm BIBUOGRAPHY OF THE LARVAE OF DECAPOD CRUSTACEA AND LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY WITH 122 FIGURES IN THE TEXT REPRINTED 1960 BY H. R. ENGELMANN (J. CRAMER) AND WHELDON & WESLEY, LTD. WEINHEIM/BERGSTR. CODICOTE/HERTS. BIBLIOGRAPHY OF THE LARVAE OF DECAPOD CRUSTACEA AND LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY WITH 122 FIGURES IN THE TEXT REPRINTED 1960 BY H. R. ENGELMANN (J. CRAMER) AND WHELDON & WESLEY, LTD. WEINHEIM/BERGSTR. CODICOTE/HERTS. COPYRIGHT 1939 & 1942 BY THfi RAY SOCIETY IN LONDON AUTHORIZED REPRINT COPYRIGHT OF THE SERIES BY J. CRAMER PUBLISHER IN WEINHEIM PRINTED IN GERMANY I9«0 i X\ T • THE RAY SOCIETY INSTITUTED MDCCCXLIV This volume (No. 125 of the Series) is issued to the Svhscribers to the RAY SOCIETY JOT the Year 1937. LONDON MCMXXXIX BIBLIOGKAPHY OF THE LARVAE OF DECAPOD CRUSTACEA BY ROBERT GURNEY, M.A., D.Sc, F.L.S. LONDON PRINTED FOR THE RAT SOCIETY SOLD BT BERNARD QUARITCH, LTD. U, GBAFTOK STBKET, NBW BOND STEBBT, LONDON, "W. 1 1939 PRINTED BY ADLABD AND SON, LIMITED 2 1 BLOOJlSBUBY WAY, LONDON, W.C. I Madt and printed in Great Britain. CONTENTS PAOE PBBFACE . " V BiBUOGRAPHY CLASSIFIED LIST . 64 Macrura Natantia 64 Penaeidea 64 Caridea 70 Macrura Reptantia 84 Nephropsidea 84 Eryonidea 88 Scyllaridea 88 Stenopidea 91 Thalassinidea 92 Anomura ; 95 Galatheidea . 95 Paguridea 97 Hippidea 100 Dromiacea 101 Brachyura 103 Gymnopleura 103 Brachygnatha 103 Oxyrhyncha 113 Oxystomata . 116 INDEX TO GENERA 120 PREFACE IT has been my intention to publish a monograph of Decapod larvae which should contain a bibliography, a part dealing with a number of general questions relating to the post-embryonic development of Decapoda and Euphausiacea, and a series of sections describing the larvae of all the groups, so far as they are known.
    [Show full text]
  • A New Pathogenic Virus in the Caribbean Spiny Lobster Panulirus Argus from the Florida Keys
    DISEASES OF AQUATIC ORGANISMS Vol. 59: 109–118, 2004 Published May 5 Dis Aquat Org A new pathogenic virus in the Caribbean spiny lobster Panulirus argus from the Florida Keys Jeffrey D. Shields1,*, Donald C. Behringer Jr2 1Virginia Institute of Marine Science, The College of William & Mary, Gloucester Point, Virginia 23062, USA 2Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA ABSTRACT: A pathogenic virus was diagnosed from juvenile Caribbean spiny lobsters Panulirus argus from the Florida Keys. Moribund lobsters had characteristically milky hemolymph that did not clot. Altered hyalinocytes and semigranulocytes, but not granulocytes, were observed with light microscopy. Infected hemocytes had emarginated, condensed chromatin, hypertrophied nuclei and faint eosinophilic Cowdry-type-A inclusions. In some cases, infected cells were observed in soft con- nective tissues. With electron microscopy, unenveloped, nonoccluded, icosahedral virions (182 ± 9 nm SD) were diffusely spread around the inner periphery of the nuclear envelope. Virions also occurred in loose aggregates in the cytoplasm or were free in the hemolymph. Assembly of the nucleocapsid occurred entirely within the nucleus of the infected cells. Within the virogenic stroma, blunt rod-like structures or whorls of electron-dense granular material were apparently associated with viral assembly. The prevalence of overt infections, defined as lethargic animals with milky hemolymph, ranged from 6 to 8% with certain foci reaching prevalences of 37%. The disease was transmissible to uninfected lobsters using inoculations of raw hemolymph from infected animals. Inoculated animals became moribund 5 to 7 d before dying and they began dying after 30 to 80 d post-exposure.
    [Show full text]
  • The Effect of Different Ph and Photoperiod Regimens on The
    Short communication: The effect of different pH and photoperiod regimens on the survival rate and developmental period of the larvae of Portunus pelagicus (Decapoda, Brachyura, Portunidae) Item Type article Authors Ravi, R.; Manisseri, M.K. Download date 28/09/2021 09:20:50 Link to Item http://hdl.handle.net/1834/37376 Iranian Journal of Fisheries Sciences Short Communication 12(2) 490-499 2013 __________________________________________________________________________________________ The effect of different pH and photoperiod regimens on the survival rate and developmental period of the larvae of Portunus pelagicus (Decapoda, Brachyura, Portunidae) Ravi R.*; Manisseri M. K. Received: December 2011 Accepted: August 2012 -Marine Biodiversity Division, Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi-682 018, India *Corresponding author’s e mail: [email protected] Keywords: Portunus pelagicus, Photoperiod, Larval rearing, Larval development, Larval survival. Crustacean larval development occurs (Waddy and Aiken, 1991), cannibalism within a narrow range of environmental (Hecht and Pienaar, 1993) and swimming parameters (Sastry, 1983). Among the activity and hence metabolism (Gardner, abiotic characteristics that influence the 1996). developmental period and survival rate of The effects of photoperiod on the larvae, pH and photoperiod are of great larval survival have been studied in several importance. High and low levels of pH are species such as the common shrimp known to adversely affect the physiology Crangon
    [Show full text]
  • Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2.
    [Show full text]
  • Koura, Paranephrops Planifrons) in the Lower North Island, New Zealand
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Habitat determinants and predatory interactions of the endemic freshwater crayfish (Koura, Paranephrops planifrons) in the Lower North Island, New Zealand. A thesis presented in partial fulfillment of the requirements for the degree of Masters of Science in Ecology at Massey University, Palmerston North, New Zealand. Logan Arthur Brown 2009 Acknowledgements My gratitude goes to all those who helped me throughout my thesis. The completion of this has taken many years and is thanks to the efforts of many who have helped me with fieldwork, made suggestions on ways to carry out experiments and been there for general support. A special thanks must go to my partner Emma who has put up with me for three years trying to complete this, also to my family and friends for their support. Thanks to my supervisor Associate Professor Russell Death for helping come up with the original topic and the comments provided on drafts. Thanks also to Fiona Death for proof reading final drafts of my thesis. The following people gave up their time to come and help me in the field. Matt Denton-Giles, Emma Round, Charlotte Minson, Jono Tonkin, Nikki Atkinson, Travis Brown, Jan Brown, Ray Brown, Peter Bills, Hannah Bills, Caitlin Bills, Brayden Bills, Hannah Rainforth, Shaun Nielson, Jess Costall, Emily Atkinson, Nikki McArthur, Carol Nicholson, Abby Deuel, Amy McDonald, Kiryn Weaver, Cleland Wallace, and Lorraine Cook.
    [Show full text]
  • Biology of the Mountain Crayfish Euastacus Sulcatus Riek, 1951 (Crustacea: Parastacidae), in New South Wales, Australia
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 October 2013 | 5(14): 4840–4853 Article Biology of the Mountain Crayfish Euastacus sulcatus Riek, 1951 (Crustacea: Parastacidae), in New South Wales, Australia Jason Coughran ISSN Online 0974–7907 Print 0974–7893 jagabar Environmental, PO Box 634, Duncraig, Western Australia, 6023, Australia [email protected] OPEN ACCESS Abstract: The biology and distribution of the threatened Mountain Crayfish Euastacus sulcatus, was examined through widespread sampling and a long-term mark and recapture program in New South Wales. Crayfish surveys were undertaken at 245 regional sites between 2001 and 2005, and the species was recorded at 27 sites in the Clarence, Richmond and Tweed River drainages of New South Wales, including the only three historic sites of record in the state, Brindle Creek, Mount Warning and Richmond Range. The species was restricted to highland, forested sites (220–890 m above sea level), primarily in national park and state forest reserves. Adult crayfish disappear from the observable population during the cooler months, re-emerging in October when the reproductive season commences. Females mature at approximately 50mm OCL, and all mature females engage in breeding during a mass spawning season in spring, carrying 45–600 eggs. Eggs take six to seven weeks to develop, and the hatched juveniles remain within the clutch for a further 2.5 weeks. This reproductive cycle is relatively short, and represents a more protracted and later breeding season than has been inferred for the species in Queensland. A combination of infrequent moulting and small moult increments indicated an exceptionally slow growth rate; large animals could feasibly be 40–50 years old.
    [Show full text]