Yabby (Cherax Destructor) Ecological Risk Screening Summary
Total Page:16
File Type:pdf, Size:1020Kb
Yabby (Cherax destructor) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, September 2012 Revised, September 2014, February 2019 Web Version, 7/12/2019 Photo: Daiju Azuma. Licensed under Creative Commons Attribution-Share Alike 2.5 Generic. Available: https://commons.wikimedia.org/wiki/File:Cherax_destructor_by_OpenCage.jpg. (February 2019). 1 Native Range and Status in the United States Native Range From CABI (2019): “C. destructor ranges over 2 million km2 in its native range from South Australia and the southern parts of the Northern Territory in the west, to the Great Dividing Range in the east (Riek, 1967; Sokol, 1988).” 1 “It appears that yabbies were largely restricted to lower altitude habitats in inland areas of southeastern Australia including the Murray-Darling Basin before European settlement, with the Euastacus spp. found in higher altitude habitats and the coastal river systems.” Status in the United States No records of Cherax destructor in the wild in the United States were found. From CABI (2019): “[…] the specimens [Cherax destructor] came from a crayfish farm in California (USA) […]” From USFWS (2016a): “The yabby was officially listed as an injurious wildlife species by the U.S. Fish and Wildlife Service in 2016 under the Lacey Act (18.U.S.C.42). Importation and shipping between the continental United States and the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States is prohibited.” From USFWS (2016b): “Of the 11 species, four species (crucian carp, Nile perch, wels catfish, and yabby) have been imported in only small numbers since 2011 […]” The Florida Fish and Wildlife Conservation Commission has listed the crayfish, Cherax destructor as a prohibited species. Prohibited nonnative species (FFWCC 2019), "are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities.” From Fusaro et al. (2019): “Pennsylvania prohibits people from transporting, introducing or importing any fish, bait fish or fish bait including crayfish (PA State Laws, Title 30). It is unlawful to possess, import or sell C. destructor in Ohio (OAC Chapter 1501:31-19). It is illegal to possess, import, sell, or offer to sell C. destructor in Michigan (NREPA Part 413). Illinois lists C. destructor as an injurious species as defined by 50 CFR 16.11-15. Therefore C. destructor cannot be “possessed, propagated, bought, sold, bartered or offered to be bought, sold, bartered, transported, traded, transferred or loaned to any other person or institution unless a permit is first obtained from the Department of Natural Resources (17 ILL. ADM. CODE, Chapter 1, Sec. 805).” This law also states that any interstate transporter is prohibited from transferring “any injurious species from one container to another; nor can they exchange or discharge from a container containing injurious species without first obtaining written permission from the Department (17 ILL. ADM. CODE, Chapter 1, Sec. 805).” The law also prohibits the release of any injurious species, including C. destructor. Wisconsin prohibits the transportation, possession, transfer of, or introduction of all nonnative crayfish (Wisconsin Chapter NR 40). Minnesota lists C. destructor as prohibited meaning that a person may not possess, import, purchase, sell, propagate, transport, or introduce C. destructor (Minnesota Rule 6216.0250).” 2 Means of Introductions in the United States No records of Cherax destructor in the wild in the United States were found. Remarks A previous version of this ERSS was originally published in 2012 and revised in September 2014. From CABI (2019): “Notwithstanding its wide distribution and its invasive potential, C. destructor is still classified by IUCN (2010) as Vulnerable. The main threats to this species are degradation of native vegetation and water pollution as a result of fertilizer and insecticide run-off from agricultural farms, as well as increased predation and competition from introduced alien species. The Australian Fisheries Management Act of 1994 designated the yabbies’ ecosystem as an Endangered Ecological Community, requiring vegetation management, run-off control and extensive surveying; without continued conservation efforts this ecosystem is under threat of irreversible degradation.” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Crandall (2016): “Animalia (Kingdom) > Arthropoda (Phylum) > Crustacea (Subphylum) > Multicrustacea (Superclass) > Malacostraca (Class) > Eumalacostraca (Subclass) > Eucarida (Superorder) > Decapoda (Order) > Pleocyemata (Suborder) > Astacidea (Infraorder) > Parastacoidea (Superfamily) > Parastacidae (Family) > Cherax (Genus) > Cherax destructor (Species)” “Status accepted” Size, Weight, and Age Range From McCormack (2014): “Cherax destructor can obtain a large size of 81 mm OCL [occipital carapace length] and weight 350 grams (McCormack 2008).” From CABI (2019): “The species was demonstrated to mature at the end of its first year of life, […] and attain a similar size to the smooth marron C. cainii in its first year of life (29 mm OCL [occipital carapace length], […]), […]. The life span is at least 3 years and possibly up to 6 years (Souty- Grosset et al., 2006). […] Individual growth is highly variable, and the maximum size of around 3 220 g for adult yabbies is reached within 2 to 3 years (Withnall, 2000). The larger yabbies are males. The chelipeds grow faster than the rest of the body, reaching the weight of 100 g in large males (Lawrence and Jones, 2002).” Environment From CABI (2019): “C. destructor is found in a wide variety of habitats, such as desert mound springs, alpine streams, subtropical creeks, rivers, billabongs, ephemeral lakes, swamps, farm dams, and irrigation channels (Sokol, 1988; Horwitz and Knott, 1995; Austin et al., 2003; Souty-Grosset et al., 2006). The majority of the range of C. destructor is characterized by high summer temperatures and low annual rainfall producing an environment conducive to frequent stagnation and desiccation.” “Environmental Requirements C. destructor is adapted to a wide range of water temperatures, between 1°C and 35°C. It does not grow at water temperatures below 15°C and falls into a state of partial hibernation (i.e. metabolism and feeding cease) when water temperature drops below 16°C (Withnall, 2000). Growth ceases at 34°C and mortalities start to occur at 36°C (Mills, 1983; Morrissy et al., 1990; Merrick and Lambert, 1991; Morrissy and Cassells, 1992). The ideal temperature range for optimum growth is 20-25°C (Withnall, 2000). It tolerates high salinities, with growth ceasing at 8 ppt (approximately equal to 25% seawater) and mortalities starting to occur at 16 ppt (Mills and Geddes, 1980). It tolerates oxygen concentration <1 mg L-1, being able to survive for a short time at 0 mg L-1 oxygen (Mills, 1983; Morrissy and Cassells, 1992). Waters with a pH between 7.5 and 8.5 are preferred; however, yabbies can tolerate a pH of 7.0 and 9.0; a pH of below 7.0 increases the toxicity of dissolved metals within the water column and makes the exoskeleton softer, and a pH of above 9.0 greatly increases the toxicity of ammonia (PIRSA, 2011). Alkalinity and hardness levels of 50-300 mg-1 provide a good buffering effect to pH swings associated with the respiration of aquatic flora and fauna; a lack of calcium in the water results in soft-shelled yabbies (PIRSA, 2011). […] they seem to prefer water with moderate levels of turbidity. […] Secchi depths of 20-60 cm are recommended for the optimal management of farm ponds (PIRSA, 2011). Khan and Nugegoda (2007) showed that C. destructor 4-week old juveniles were less sensitive to trace metals than most other tested aquatic organism, showing 96-h LC50 values of 379 μg L- 1 for cadmium, 494 μg/L-1 for copper, 50 mg L-1 for iron and 327 mg L-1 for nickel.” 4 Climate/Range From USFWS (2016a): “The common yabby inhabits temperate and tropical climates.” Distribution Outside the United States Native From CABI (2019): “C. destructor ranges over 2 million km2 in its native range from South Australia and the southern parts of the Northern Territory in the west, to the Great Dividing Range in the east (Riek, 1967; Sokol, 1988).” “It appears that yabbies were largely restricted to lower altitude habitats in inland areas of southeastern Australia including the Murray-Darling Basin before European settlement, with the Euastacus spp. found in higher altitude habitats and the coastal river systems.” Introduced From Vedia and Miranda (2013): “The first introduction of C. destructor into Spain and Europe took place in Girona (Catalonia) in 1983, involving specimens from California (Souty-Grosset et al., 2006). Subsequently (1984- 1985), another introduction was conducted in the province of Zaragoza, where a population was eventually stabilised in Gordués, near Sos del Rey Católico (Holdich et al., 2009). Because C. destructor is sensitive to aphanomycosis, some of its populations have been eradicated using the crayfish plague pathogen. However, some populations persist to the present day (Holdich et al., 2009). It is believed that there are at least four stable populations in Spain: one in Aragon and three in Navarra (Souty-Grosset et al., 2006) […]. Moreover, this species has been detected in other European countries in recent years. For example, a population was detected in Italy in 2008, and one individual was reported in Lake Geneva, Switzerland (Scalici et al., 2009).” From CABI (2019): “The species was introduced to Western Australia from western Victoria in 1932 (Victorian Aquaculture Council, 1999; Western Australia Fisheries, 1999; Austin, 1985; Morrissy and Cassells, 1992). […]. In 1982, C. destructor was for the first time collected from a wild aquatic system in sympatry with a native crayfish species (Cherax quinquecarinatus) in Western Australia (Austin, 1985; Lynas et al., 2004). By 1985, most known yabby sites were still east of the Albany Highway. They have since then shown a continuing strong spread.