Circadian Clocks in Crustaceans: Identified Neuronal and Cellular Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
New Alien Crayfish Species in Central Europe
NEW ALIEN CRAYFISH SPECIES IN CENTRAL EUROPE Introduction pathways, life histories, and ecological impacts DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Christoph Chucholl aus Rosenheim Ulm 2012 NEW ALIEN CRAYFISH SPECIES IN CENTRAL EUROPE Introduction pathways, life histories, and ecological impacts DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Christoph Chucholl aus Rosenheim Ulm 2012 Amtierender Dekan: Prof. Dr. Axel Groß Erstgutachter: Prof. Dr. Manfred Ayasse Zweitgutachter: Prof. apl. Dr. Gerhard Maier Tag der Prüfung: 16.7.2012 Cover picture: Orconectes immunis male (blue color morph) (photo courtesy of Dr. H. Bellmann) Table of contents Part 1 – Summary Introduction ............................................................................................................................ 1 Invasive alien species – a global menace ....................................................................... 1 “Invasive” matters .......................................................................................................... 2 Crustaceans – successful invaders .................................................................................. 4 The case of alien crayfish in Europe .............................................................................. 5 New versus Old alien crayfish ....................................................................................... -
Crustacea-Arthropoda) Fauna of Sinop and Samsun and Their Ecology
J. Black Sea/Mediterranean Environment Vol. 15: 47- 60 (2009) Freshwater and brackish water Malacostraca (Crustacea-Arthropoda) fauna of Sinop and Samsun and their ecology Sinop ve Samsun illeri tatlısu ve acısu Malacostraca (Crustacea-Arthropoda) faunası ve ekolojileri Mehmet Akbulut1*, M. Ruşen Ustaoğlu2, Ekrem Şanver Çelik1 1 Çanakkale Onsekiz Mart University, Fisheries Faculty, Çanakkale-Turkey 2 Ege University, Fisheries Faculty, Izmir-Turkey Abstract Malacostraca fauna collected from freshwater and brackishwater in Sinop and Samsun were studied from 181 stations between February 1999 and September 2000. 19 species and 4 subspecies belonging to 15 genuses were found in 134 stations. In total, 23 taxon were found: 11 Amphipoda, 6 Decapoda, 4 Isopoda, and 2 Mysidacea. Limnomysis benedeni is the first time in Turkish Mysidacea fauna. In this work at the first time recorded group are Gammarus pulex pulex, Gammarus aequicauda, Gammarus uludagi, Gammarus komareki, Gammarus longipedis, Gammarus balcanicus, Echinogammarus ischnus, Orchestia stephenseni Paramysis kosswigi, Idotea baltica basteri, Idotea hectica, Sphaeroma serratum, Palaemon adspersus, Crangon crangon, Potamon ibericum tauricum and Carcinus aestuarii in the studied area. Potamon ibericum tauricum is the most encountered and widespread species. Key words: Freshwater, brackish water, Malacostraca, Sinop, Samsun, Turkey Introduction The Malacostraca is the largest subgroup of crustaceans and includes the decapods such as crabs, mole crabs, lobsters, true shrimps and the stomatopods or mantis shrimps. There are more than 22,000 taxa in this group representing two third of all crustacean species and contains all the larger forms. *Corresponding author: [email protected] 47 Malacostracans play an important role in aquatic ecosystems and therefore their conservation is important. -
Seeing Through Moving Eyes
bioRxiv preprint doi: https://doi.org/10.1101/083691; this version posted June 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Seeing through moving eyes - microsaccadic information sampling provides 2 Drosophila hyperacute vision 3 4 Mikko Juusola1,2*‡, An Dau2‡, Zhuoyi Song2‡, Narendra Solanki2, Diana Rien1,2, David Jaciuch2, 5 Sidhartha Dongre2, Florence Blanchard2, Gonzalo G. de Polavieja3, Roger C. Hardie4 and Jouni 6 Takalo2 7 8 1National Key laboratory of Cognitive Neuroscience and Learning, Beijing, Beijing Normal 9 University, Beijing 100875, China 10 2Department of Biomedical Science, University of Sheffield, Sheffield S10 T2N, UK 11 3Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, 12 Portugal 13 4Department of Physiology Development and Neuroscience, Cambridge University, Cambridge CB2 14 3EG, UK 15 16 *Correspondence to: [email protected] 17 ‡ Equal contribution 18 19 Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors 20 and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors 21 would be expected to generate blurry and coarse retinal images of the world. Here we 22 demonstrate that Drosophila see the world far better than predicted from the classic theories. 23 By using electrophysiological, optical and behavioral assays, we found that R1-R6 24 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which 25 resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving 26 objects at saccadic speeds beyond the predicted motion-blur-limit. -
Anti-Predator Behaviours of A
CATHY R. SHAVE, COLIN R. TOWNSEND and TODD A. CROWL1 1 Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand. 1 Present address: College of Natural Resources, Utah State University, Logan, Utah, U.S.A. ANTI-PREDATOR BEHAVIOURS OF A FRESHWATER CRAYFISH (PARANEPHROPS ZEALANDICUS)TOANATIVE AND AN INTRODUCED PREDATOR ________________________________________________________________________________________________________________________________ Summary: The anti-predator behaviours of a New Zealand freshwater crayfish (Paranephrops zealandicus) to the native long-finned eel (Anguilla dieffenbachii)and the introduced brown trout (Salmo trutta)were investigated. Crayfish modified their behaviour in the presence of both trout and eels. However, a significantly greater number of defensive chela displays and swimming responses were made to eels than trout. Crayfish were able to use chemical cues from skin mucus to detect eels but not trout. Paranephrops zealandicus is able to make some appropriate defensive behavioural responses to the introduced brown trout as well as to its native predator, the long-finned eel. However, crayfish may be at greater risk from the introduced predator because of their apparent inability to detect trout using non-contact chemical cues. This may be a reflection of the different co-evolutionary histories crayfish have had with trout and eels. ________________________________________________________________________________________________________________________________ Keywords: anti-predator behaviour; -
Decapoda: Cambaridae) of Arkansas Henry W
Journal of the Arkansas Academy of Science Volume 71 Article 9 2017 An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Henry W. Robison Retired, [email protected] Keith A. Crandall George Washington University, [email protected] Chris T. McAllister Eastern Oklahoma State College, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Robison, Henry W.; Crandall, Keith A.; and McAllister, Chris T. (2017) "An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas," Journal of the Arkansas Academy of Science: Vol. 71 , Article 9. Available at: http://scholarworks.uark.edu/jaas/vol71/iss1/9 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Cover Page Footnote Our deepest thanks go to HWR’s numerous former SAU students who traveled with him in search of crayfishes on many fieldtrips throughout Arkansas from 1971 to 2008. Personnel especially integral to this study were C. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................ -
Paratelphusa 13
--L - - • > 9^-: [h ' H '\:>t y^^ X-T-J ^ J^"i >w^%^' m -_'''_ .-r-r;. ,:-:?>?^ '* 1.1 :!;. ^ -A:?M^7A\ I 1- ^ I -I -• — V- --J K. 1 .li. T J-B ... __ ,.^-^,-^^ " • tail i:-' r=^ -/T 7>: ^ - •-;i"\ 4' f t-*i.?-i^H^ -• ' . 'V..- '- ^ '—I r^. ' ir < - '• •\ •• y. - ) .-• J - I ^ - ' '-•*. f ^ '•-•/ •-' '• -r —'•* - 1 - -• • ^ X ' I ^ ^' -' —i,.y J. -M-: '*;:: • -^ _1 *> •-. ::;. - ^ ••'.••- " - - - J-r-.,K • > A- ."• C •- :\ . - i- ' >* /. ,,/. -; ^YV ^^'' •"••• ^M ./" ^' ^ -:? jfj •^ ^ J ' b -IT .\ ^S ' V . 1 -I* ^. i'-4 J ClTAEOGf ••-'.•. r^- \x. J - ^ J h ,--^ d( • ••'•*• - -5 - ^ • •- - ' - -' I- 'W^c •, ' '' •••••• -1 Hi"'.''- -'<• u I - '* . ' ! I • -• ^. > y A- K L T ^ * ':\ ^' -^ -'^' % • > fr- ^ ' '' • J "^ vf, - ^ - - -1* >- — h .,>y OF THE r •' ^ v ,1 r.- / •/ . -v.-*. \ _ •-I '•r v>^,- " - ••• i-..,-v. "^ •• rs F- . v ^T^' f » **r • •>- >• » .,*. vV • J -' *• .V ^ _^ "J J V . L| ..**lr- n- -• -^ I ^ y- -•^ .t ^^ -'\ ,- s' m .>•-. *- ; '. b 'T^n -" •- % - ': I -' •» ; --< • \^ r% •-< '^ ' • - f n- -"l.ir'^ ' L "ij- .r '• ^1.. ^*r ^ --• --. 1 . -J -• -, •» --•• & .w - • : ^..^^'i >^ >s. (•.i.^ •: .T'^. -y 7 -•t -"•*> •^ .-.- : ' . '*- ii_ f r -^ "•-. < - > ' :•- • •-- . --# 'I f * •: J \ ^ k. ^1 -^•^ T y ef'TKE- - ' X H- *ff'' ^ V . *. •r' H r * Hi < 'T< »< -; _' _- .../•^ -• > \ .*^A » ' .' '• - • k - I- ^ . •>^>- --< */ A - ' - •.. :^ \-. 7* f • i "^ .- ^ -• -'/ .r' V •,! IT' « •«• ; - ^.' •. •' ** t. \ •v •V, /. ^' •^ ^.^ A. V, I 1 * -/ > ' I - * V v' *" t i*. Jl ' ^ V (« 1- I ^r \ ,\^ J. - , _ r >-• -\ ,) *- "- " 1^ •tjx N, /- r . •* r '".. '>.*>- >.^' .m- i •- -i. i_ ' --< -- -w '<^ 1^ - ^' I, f '^ r- - •»> •'. - ,<"' ^ y. ififVi' -I -- '. J OF THE . V, T\-: .--^ ' ' ' ^ r i*^ ' ^ \ J-l.'- \J- r - 't - 1 , 'I •^ ^^- II • ll -:*'^ X - Jt. •'J>..-- N-",; 31 -. 1 •.'! . -
Population Density, Microhabitat Use, and Size Characteristics of Pseudothelphusa Dugesi, a Threatened Species of Freshwater
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342468496 Population density, microhabitat use, and size characteristics of Pseudothelphusa dugesi, a threatened species of freshwater crab from Mexico (Brachyura: Pseudothelphusidae) Article in Invertebrate Biology · June 2020 DOI: 10.1111/ivb.12295 CITATIONS READS 0 365 3 authors, including: Elsah Arce Uribe Universidad Autónoma del Estado de Morelos 18 PUBLICATIONS 21 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Living food culture used in aquaculture View project All content following this page was uploaded by Elsah Arce Uribe on 02 July 2020. The user has requested enhancement of the downloaded file. Received: 23 September 2019 | Accepted: 6 May 2020 DOI: 10.1111/ivb.12295 ORIGINAL MANUSCRIPT Population density, microhabitat use, and size characteristics of Pseudothelphusa dugesi, a threatened species of freshwater crab from Mexico (Brachyura: Pseudothelphusidae) Domínguez Emmanuel Carlos Paniagua1 | Uribe Elsah Arce2 | Diego Alfonso Viveros- Guardado1 1Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Abstract Morelos, Cuernavaca, México The brachyuran crab Pseudothelphusa dugesi, or cangrejito barranqueño, is an en- 2 Laboratorio de Acuicultura, Departamento dangered species endemic to Cuernavaca, Morelos, in central Mexico. Individuals of de Hidrobiología, Centro de Investigaciones Biológicas, Universidad Autónoma del P. dugesi inhabit freshwater springs, which are affected by human actions through Estado de Morelos, Cuernavaca, México wastewater drainage, eutrophication, exploitation, and invasive predators such as Correspondence rainbow trout (Oncorhynchus mykiss). In this study, we evaluated the population den- Elsah Arce Uribe, Laboratorio de sity, microhabitat use, and size characteristics of P. -
Relationship Between Depressive Mood and Chronotype in Healthy Subjects
Psychiatry and Clinical Neurosciences 2009; 63: 283–290 doi:10.1111/j.1440-1819.2009.01965.x Regular Article Relationship between depressive mood and chronotype in healthy subjects Maria Paz Hidalgo, MP, MD, PhD,1* Wolnei Caumo, MD, PhD,2,3 Michele Posser, MD,4 Sônia Beatriz Coccaro, NS, PhD,5 Ana Luiza Camozzato, MD, PhD4 and Márcia Lorena Fagundes Chaves, MD, PhD6 1Department of Psychiatry, Medical School and 6Graduate Program in Internal Medicine–Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), 2Anesthesia and Perioperative Medicine Service, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS, 3Pharmacology Department, Instituto de Ciências Básicas da Saúde, UFRGS, 4Neurology Service, HCPA and 5Department of Surgical Nursing, School of Nursing, UFRGS, Porto Alegre, Brazil Aim: The endogenous circadian clock generates daily reporting more severe depressive symptoms com- variations of physiological and behavior functions pared to morning- and intermediate-chronotypes, such as the endogenous interindividual component with an odds ratio (OR) of 2.83 and 5.01, respec- (morningness/eveningness preferences). Also, mood tively. Other independent cofactors associated with a disorders are associated with a breakdown in the higher level of depressive symptoms were female organization of ultradian rhythm. Therefore, the gender (OR, 3.36), minor psychiatric disorders (OR, purpose of the present study was to assessed the asso- 3.70) and low future self-perception (OR, 3.11). ciation between chronotype and the level of depres- Younger age, however, was associated with a lower sive symptoms in a healthy sample population. level of depressive symptoms (OR, 0.97). The ques- Furthermore, the components of the depression tions in the MADRS that presented higher discrimi- scale that best discriminate the chronotypes were nate coefficients among chronotypes were those determined. -
Studio Della Modulazione Ormonale Della Riproduzione E Della Crescita Nei Crostacei Decapodi Mediante L’Uso Di Neurormoni Ricombinanti Ed Anticorpi Specifici
UNIVERSITÀ DEGLI STUDI DI TRIESTE Sede Amministrativa del Dottorato di Ricerca XX CICLO DEL DOTTORATO DI RICERca IN NEUROSCIENZE Studio della modulazione ormonale della riproduzione e della crescita nei Crostacei Decapodi mediante l’uso di neurormoni ricombinanti ed anticorpi specifici (Settore scientifico-disciplinare BIO/05) DOTTORANDO COORDINATORE DEL COLLEGIO DEI ALESSANDRO MOSCO DOCENTI Prof.sa PAOLA LORENZON Università degli Studi di Trieste TUTORE Dott. PIERO G. GIULIANINI Università degli Studi di Trieste CO-TUTORE Dott. PAOLO EDOMI Università degli Studi di Trieste Anno Accademico 2006-2007 Indice Introduzione 1 Localizzazione del cHH 2 Struttura del cHH 4 Maturazione 9 Funzione 10 Manipolazione ormonale 12 Scopo della tesi 13 Materiali e metodi 14 Clonaggio del cDNA nel vettore di espressione 14 Clonaggio del Asl-rcHH-Gly-Lys 14 Clonaggio del Asl-rcHH-Gly 14 Espressione dei peptidi ricombinanti 14 Refolding e purificazione 16 Reazione di ammidazione 16 Spettrometria di massa 16 Dicroismo circolare 17 Estratto di ghiandole del seno 17 Purificazione del cHH nativo 17 Misura della concentrazione 17 Produzione e purificazione di anticorpi anti-Asl-rcHH-Val-Gly 18 ELISA 18 Stabulazione degli animali 19 Saggi biologici in vivo 19 Inibizione del cHH in A. leptodactylus 20 Risultati 21 Clonaggio del cDNA codificante per cHH-Gly-Lys e cHH-Gly 21 Espressione dei peptidi ricombinanti 21 Refolding e purificazione 21 Ammidazione 22 Caratterizzazione biochimica 22 Quantificazione del cHH 25 Saggi omologhi 26 Saggi eterologhi 29 Risposta iperglicemica -
Circadian Rhythms Circadian Rhythms Are Defined As an Endogenous
Circadian Rhythms Circadian rhythms are defined as an endogenous rhythm pattern that cycles on a daily (approximately 24 hour) basis under normal circumstances. The name circadian comes from the Latin circa dia, meaning about a day. The circadian cycle regulates changes in performance, endocrine rhythms, behavior and sleep timing (Duffy, Rimmer, & Czeisler, 2001). More specifically these physiological and behavioral rhythms control the waking/sleep cycle, body temperature, blood pressure, reaction time, levels of alertness, patterns of hormone secretion, and digestive functions. Due to the large amount of control of the circadian rhythm cycle it is often referred to as the pacemaker. Two specific forms of circadian rhythms commonly discussed in research are morning and evening types. There is a direct correlation between the circadian pacemaker and the behavioral trait of morning ness-evening ness (Duffy et al., 2001). People considered morning people rise between 5 a.m. and 7 a.m. go to bed between 9 p.m. and 11 p.m., whereas evening people tend to wake up between 9 a.m. and 11 a.m. and retire between 11 p.m. and 3 a.m. The majority of people fall somewhere between the two types. Evidence has shown that morning types have more rigid circadian cycles evening types, who display more flexibility in adjusting to new schedules (Hedge, 1999). One theory is that evening types depend less on light cues from the environment to shape their sleep/wake cycle, and therefore exhibit more internal control over their circadian rhythms. Tidal rhythms Many marine organisms that visit or live in the intertidal zone exhibit tidally- organized behavioral rhythms that are, in most cases, endogenous and capable of being entrained by a number of different natural cues (DeCoursey 1983; Palmer 1995a; Chabot et al.