The Crayfishes of West Virginia's Southwestern Coalfields Region

Total Page:16

File Type:pdf, Size:1020Kb

The Crayfishes of West Virginia's Southwestern Coalfields Region Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2013 The rC ayfishes of West Virginia’s Southwestern Coalfields Region with an Emphasis on the Life History of Cambarus theepiensis David Allen Foltz II Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Foltz, David Allen II, "The rC ayfishes of West Virginia’s Southwestern Coalfields Region with an Emphasis on the Life History of Cambarus theepiensis" (2013). Theses, Dissertations and Capstones. Paper 731. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. The Crayfishes of West Virginia’s Southwestern Coalfields Region with an Emphasis on the Life History of Cambarus theepiensis A Thesis submitted to the Graduate College of Marshall University Huntington, WV In partial fulfillment of the requirements for the degree of Master of Science Biological Sciences: Watershed Resource Science Prepared by David Allen Foltz II Approved by Committee Members: Zachary Loughman, Ph.D., Major Advisor David Mallory, Ph.D., Committee Member Mindy Armstead, Ph.D., Committee Member Thomas Jones, Ph.D., Committee Member Thomas Pauley, Ph.D., Committee Member Marshall University Defended 11/13/2013 Final Submission to the Graduate College December 2013 ©2013 David Allen Foltz II ALL RIGHTS RESERVED ii AKNOWLEDGMENTS I would like to extend my gratitude to my committee members. Without their guidance and support, my thesis would not have come to fruition. To Dr.’s David Mallory and Mindy Armstead for their thoughtful input and suggestions along the way, thank you. To Dr. Pauley whom always took the time to listen to me, whether it was about my casual field herping, collecting, or sampling, you always felt like a third grandfather to me, only with a Ph.D., you have my thanks. To Dr. Jones, thank you for all of your input, both in regards to crayfish as well as freshwater mussels. Thank you for introducing me to Malacology and the amazing world of diving. Lastly, words cannot describe my gratitude to the final member of my committee and my advisor, Dr. Zachary Loughman. During my undergraduate career, you saw something in me that neither I nor others did. Thanks to your guidance and friendship, I have strived to push myself above and beyond what I originally thought myself possible of achieving. It is no exaggeration to say that without you, I would not be in this field today, nor would I have my have obtained my Master’s degree. From the bottom of my heart, thank you for your tutelage, your guidance, and most importantly, your friendship. While my committee was influential to the completion of my thesis, it would be a colossal disservice to not mention the following people, who were at times just as influential as the aforementioned individuals. To Casey Swecker, despite not being on my committee and having a fulltime job of your own, you always took time to offer advice, review any of my documents, and be there when others were difficult to track down or contact. I consider you a great friend and a wonderful colleague. You have my deepest thanks. To my field crew: Jeremy Kinney, Lorin Keller, Jessica Curtis, Na-Yung Culley, Kathy Loughman, Colin Loughman, Kristy iii Mixer, Stephany Haggerty, and Jessica’s dog, Pookie, you have my deepest thanks. The collecting days were made enjoyable thanks to you despite setbacks, unforeseen complications, and chaotic weather. To Wanda Dyke, your smiling face and cheerful personality always brightened my day. You were always so helpful no matter what it was that I needed. I will miss seeing you every day. Lastly, to Kyle McGill, my graduate roommate and best friend, were it not for you, my thesis would not have happened. Some of the most difficult moments in my life happened during my time at Marshall and on many days, you alone got me through them. Whether it was by humoring me with your insane sense of humor or listening, many times repeatedly, to my problems, you made it possible for me to not give up and continue to the finish line. Words cannot express my gratitude to you. To all those that told me I could, and to all those that told me I could not, I extend my thanks. Your words kept me moving when I wanted to stop. Lastly, a special thanks to my family. To my parents, thank you for always believing in me and allowing me to make my own decisions in life and supporting them, even if at times you did not agree with them. I would not be where I am today without you. To all the individuals in all fields of Biology that have inspired me, ~ Thank You ~ iv Table of Contents Page Acknowledgments ......................................................................................................iii Chapter I: Introduction to Crayfish Conservation in the Coalfields of West Virginia ..... 1 Background, Taxonomy, and Environmental Roles .............................................. 1 Land Use and Anthropogenic Activities within the Study Area ........................... 3 Justification of Study Efforts ................................................................................. 7 Works Cited ............................................................................................................ 8 Appendix I ............................................................................................................. 13 Figures Figure 1: Supplemental crayfish schematic figure ............................ 14 Chapter II: Life History of Cambarus theepiensis, a newly described crayfish from the coalfields of Southwestern West Virginia and Eastern Kentucky ................................ 15 Abstract................................................................................................................. 15 Introduction .......................................................................................................... 16 Materials and Methods ........................................................................................ 17 Site selection ............................................................................................ 17 Study sites ................................................................................................. 18 Life History ................................................................................................ 19 Physiochemical ......................................................................................... 21 Gomedic development analysis .................................................... 21 Statistical analysis ......................................................................... 22 Results ................................................................................................................... 24 Reproductive cycle .................................................................................... 24 Gomedic development ............................................................................. 26 Sex ratios ................................................................................................... 27 Form analyses ........................................................................................... 27 Size at maturity ......................................................................................... 27 Size class structure and habitat utilization ............................................... 28 Damage and mutations ............................................................................. 28 Discussion ............................................................................................................. 29 Reproductive cycle .................................................................................... 29 Gomedic development .............................................................................. 31 Form analyses............................................................................................ 32 Size class structure and habitat utilization ............................................... 34 v Page Works Cited .......................................................................................................... 36 Appendix II ............................................................................................................ 40 Table 2.1: Monthly occurrence of glair, eggs, instars, and free living juveniles ........................................................................................ 41 Table 2.2: Mean ± SE and range (mm) for morphometrics ......... 42 Figures Figure 2.1: Butler Adkins Branch .................................................. 43 Figure 2.1: Left Fork Miller’s Branch ............................................. 44 Figure 2.3: Monthly CPUE graph for species encountered .......... 45 Figure 2.4: Monthly reproductive state for Cambarus theepiensis for the year of May 2012- April 2013 ....................................................... 46 Figure 2.5: Mean internal egg diameter ....................................... 47 Figure 2.6: Monthly frequency histogram plots for Cambarus theepiensis for the year of May 2012- April 2013 ........................................... 48 Figure 2.7: Female Cambarus theepiensis with attached instars . 49 Chapter III: Zoogeography, taxonomy, and conservation
Recommended publications
  • Endangered Species Act 2018
    ▪ Requires regulators to consider potential effects on T&E species during permitting process ▪ Must evaluate whether they are present ▪ If present, will there be any effects? ▪ Each plant or animal type has particular set of rules about when protective measures need to be placed in permit ▪ Terrestrial species typically only require protections when present within footprint of activity or within a buffer zone of habitat features (roost trees, hibernacula, etc.) ▪ Aquatic species require protections if project is within a certain distance upstream and/or if the project disturbs an upstream drainage area greater than a given size Species Scientific Name Eastern cougar Felis concolor cougar* Indiana bat Myotis sodalis Virginia big-eared bat Corynorhinus townsendii virginianus Northern long-eared bat Myotis septentrionalis Cheat Mountain salamander Plethodon nettingi Diamond darter Crystallaria cincotta Madison Cave isopod Antrolana lira Species Scientific Name Clubshell mussel Pleurobema clava Fanshell mussel Cyprogenia stegaria James spiny mussel Pleurobema collina Pink mucket mussel Lampsilis abrupta Rayed bean mussel Villosa fabalis Sheepnose mussel Plethobasus cyphyus Spectaclecase mussel Cumberlandia monodonta Species Scientific Name Snuffbox mussel Epioblasma triquetra Tubercled blossom pearly mussel Epioblasma torulosa torulosa Guyandotte River crayfish Cambarus veteranus Big Sandy crayfish Canbarus callainus Flat-spired three toothed land snail Triodopsis platysayoides Harperella Ptilimnium nodosum Northeastern bulrush Scirpus ancistrochaetus
    [Show full text]
  • Common Name: COOSAWATTEE CRAYFISH Scientific Name: Cambarus (Hiaticambarus) Coosawattae Hobbs Other Commonly Used Names: None P
    Common Name: COOSAWATTEE CRAYFISH Scientific Name: Cambarus (Hiaticambarus) coosawattae Hobbs Other Commonly Used Names: none Previously Used Scientific Names: none Family: Cambaridae Rarity Ranks: G1/S1 State Legal Status: Endangered Federal Legal Status: none Description: The base color of the Coosawattee crayfish is brownish to olive with a reddish or burgundy coloration on the posterior portion of the carapace and the posterior edge of each abdominal segment. Margins of the rostrum and postorbital ridges are orange to reddish. The claws can be quite large in relation to the body and there is a gap between the fingers of the claw when the claw is closed. There is usually a tuft of setae at the base of the fixed finger of the claw and a single row of flattened tubercles along the mesial margin of the palm. The rostrum tapers anteriorly and appears “pinched” near the middle. The areola is broad with sides that are nearly parallel. Cervical spines are absent. This species reaches a maximum total body length of about 75 mm (3 inches). Similar Species: The Coosawattee crayfish may be found with the similar appearing beautiful crayfish (Cambarus speciosus). The Coosawattee crayfish differs from the latter by the lack of cervical spines and a rostrum that appears pinched in the middle compared to the nearly parallel- sided rostrum of the beautiful crayfish Habitat: Adults are typically found under rocks in relatively fast currents within streams. Juveniles may be found in leaves or woody debris in slower moving water. Diet: No studies of the Coosawattee crayfish are known. Crayfishes are considered opportunistic omnivores and are likely to feed on live and decaying vegetation, aquatic insect larvae, small fishes, and dead animal matter.
    [Show full text]
  • Proposed Rule
    This document is scheduled to be published in the Federal Register on 01/28/2020 and available online at https://federalregister.gov/d/2020-01012, and on govinfo.gov DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS–R5–ES–2019–0098; 4500090023] RIN 1018-BE19 Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Big Sandy Crayfish and the Guyandotte River Crayfish AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule. SUMMARY: We, the U.S. Fish and Wildlife Service (Service), propose to designate critical habitat for the Big Sandy crayfish (Cambarus callainus) and the Guyandotte River crayfish (C. veteranus) under the Endangered Species Act of 1973, as amended (Act). In total, approximately 582 stream kilometers (skm) (362 stream miles (smi)) in Martin and Pike Counties, Kentucky; Buchanan, Dickenson, and Wise Counties, Virginia; and McDowell, Mingo, and Wayne Counties, West Virginia, are proposed as critical habitat for the Big Sandy crayfish. Approximately 135 skm (84 smi) in Logan and Wyoming Counties, West Virginia, are proposed as critical habitat for the Guyandotte River crayfish. If we finalize this rule as proposed, it would extend the Act’s protections to these species’ critical habitat. We also announce the availability of a draft economic analysis of the proposed designation of critical habitat for these species. DATES: We will accept comments on the proposed rule or draft economic analysis (DEA) that are received or postmarked on or before [INSERT DATE 60 DAYS AFTER DATE OF 1 PUBLICATION IN THE FEDERAL REGISTER]. Comments submitted electronically using the Federal eRulemaking Portal (see ADDRESSES, below) must be received by 11:59 p.m.
    [Show full text]
  • A New Species of Crayfish (Decapoda: Cambaridae) Of
    CAMBARUS (TUBERICAMBARUS) POLYCHROMATUS (DECAPODA: CAMBARIDAE) A NEW SPECIES OF CRAYFISH FROM OHIO, KENTUCKY, INDIANA, ILLINOIS AND MICHIGAN Roger F Thoma Department of Evolution, Ecology, and Organismal Biology Museum of Biological Diversity 1315 Kinnear Rd., Columbus, Ohio 43212-1192 Raymond F. Jezerinac Deceased, 21 April 1996 Thomas P. Simon Division of Crustaceans, Aquatic Research Center, Indiana Biological Survey, 6440 South Fairfax Road, Bloomington, Indiana 47401 2 Abstract. --A new species of crayfish Cambarus (Tubericambarus) polychromatus is described from western Ohio, Indiana, southern and east-central Illinois, western Kentucky, and southern Michigan areas of North America. Of the recognized members of the subgenus, it is most closely related to Cambarus (T.) thomai, found primarily in eastern Ohio, Kentucky, and Tennessee and western West Virginia. It is easily distinguished from other recognized members of the subgenus by its strongly deflected rostral tip. __________________________________ Raymond F. Jezerinac (RFT) studied the Cambarus diogenes species complex for two decades. He described one new species and erected the subgenus Tubericambarus (Jezerinac, 1993) before his untimely death in 1996. This paper is the continuing efforts of the senior author (RFT) to complete Ray’s unfinished work. Ray had long recognized this species as distinct, but was delayed in its description by his work on the crayfishes of West Virginia (Jezerinac et. al., 1995). After his death, a partial manuscript was found on Ray’s computer at the Ohio State University Museum of Biodiversity, Columbus, Ohio. That manuscript served as the impetus for this paper. This species first came to the 3 attention of RFJ and RFT in 1978 when conducting research into the Cambarus bartonii species complex.
    [Show full text]
  • New River Crayfish Range Wide Status Assessment
    New River Crayfish Range Wide Status Assessment William T. Russ, North Carolina Wildlife Resources Commission, Division of Inland Fisheries, 645 Fish Hatchery Road, Marion, NC 28752 Zach J. Loughman, West Liberty University, Department of Natural Sciences and Mathematics, Campus Service Center Box 139, West Liberty University, West Liberty, WV 26074 Roger F. Thoma, Midwest Biodiversity Institute, Inc., 4673 Northwest Parkway, Hilliard, OH 43026 Brian T. Watson, Virginia Department of Game and Inland Fisheries, 1132 Thomas Jefferson Road, Forest, VA 24551 Todd D. Ewing, North Carolina Wildlife Resources Commission, Division of Inland Fisheries, 1721 Mail Service Center, Raleigh, NC 27699 Abstract: The New River crayfish, (Cambarus chasmodactylus), was described in 1966 from the East Fork of the Greenbrier River, West Virginia, and historically occurred throughout the New River Basin from the Greenbrier River sub-basin in West Virginia, upstream through Virginia, and into the headwaters of the South Fork New River in North Carolina. The New River crayfish was part of a federal listing species petition in 2010 and it is cur- rently being evaluated for listing as either threatened or endangered by the U.S. Fish and Wildlife Service under the Endangered Species Act. In order to understand the current distribution and status of this species, a range-wide assessment was undertaken by various organizations and agencies in West Virginia, Virginia, and North Carolina. Biological information was summarized, including species description, habitat use, life history, and current distribution. All historical and recent collections were compared and spatially displayed using GIS software. The New River crayfish was collected in three 8-digit hydrologic unit codes (HUCs) and 14 counties in three states, with the majority of occurrences in the Upper New and Greenbrier River sub-basins.
    [Show full text]
  • Decapoda: Cambaridae) of Arkansas Henry W
    Journal of the Arkansas Academy of Science Volume 71 Article 9 2017 An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Henry W. Robison Retired, [email protected] Keith A. Crandall George Washington University, [email protected] Chris T. McAllister Eastern Oklahoma State College, [email protected] Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Robison, Henry W.; Crandall, Keith A.; and McAllister, Chris T. (2017) "An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas," Journal of the Arkansas Academy of Science: Vol. 71 , Article 9. Available at: http://scholarworks.uark.edu/jaas/vol71/iss1/9 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Annotated Checklist of the Crayfishes (Decapoda: Cambaridae) of Arkansas Cover Page Footnote Our deepest thanks go to HWR’s numerous former SAU students who traveled with him in search of crayfishes on many fieldtrips throughout Arkansas from 1971 to 2008. Personnel especially integral to this study were C.
    [Show full text]
  • Habitat Distribution and Abundance of Crayfishes in Two Florida Spring-Fed Rivers
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2016 Habitat distribution and abundance of crayfishes in two Florida spring-fed rivers Tiffani Manteuffel University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Manteuffel, Tiffani, "Habitat distribution and abundance of crayfishes in two Florida spring-fed rivers" (2016). Electronic Theses and Dissertations, 2004-2019. 5230. https://stars.library.ucf.edu/etd/5230 HABITAT DISTRIBUTION AND ABUNDANCE OF CRAYFISHES IN TWO FLORIDA SPRING-FED RIVERS by TIFFANI MANTEUFFEL B.S. Florida State University, 2012 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology in the College of Sciences at the University of Central Florida Orlando, Florida Fall Term 2016 Major Professor: C. Ross Hinkle © 2016 Tiffani Manteuffel ii ABSTRACT Crayfish are an economically and ecologically important invertebrate, however, research on crayfish in native habitats is patchy at best, including in Florida, even though the Southeastern U.S. is one of the most speciose areas globally. This study investigated patterns of abundance and habitat distribution of two crayfishes (Procambarus paeninsulanus and P. fallax) in two Florida spring-fed rivers (Wakulla River and Silver River, respectively).
    [Show full text]
  • American Fisheries Society •
    VOL 36 NO 10 OCTOBER 2011 FisheriesAmerican Fisheries Society • www.fisheries.org NSERC’s HydroNet: A national research network to promote sustainable hydropower and healthy aquatic ecosystems Conservation and Management of Crayfishes: Lessons from Pennsylvania 03632415(2011)36(10) VOL 36 NO 10 Fisheries OCTOBER 2011 Contents COLUMNS 477 PRESIDENT’S HOOK Collaborative Networks and AFS: How Strong Are Our Connections? Bill Fisher—AFS President 496 515 GUEST DIRECTOR’S LINE Observations From Recreational Fishing in the Northern Gulf of Densities of Orconectes rusticus are often extremely high in invaded Mexico One Year After the Deepwater Horizon Oil Spill systems such as the Susquehanna River in Pennsylvania. A report from a fishing trip to the Gulf. Don Jackson—AFS Past President STUDENT ANGLE 508 Live to Spawn Another Day: Understanding The Fuel UPDATE Efficiency Of Snake River Steelhead 478 LEGISLATION AND POLICY Determining the fuel efficiency of a steelhead is no easy Elden W. Hawkes, Jr. task, especially for the steelhead. Zachary L. Penney FEATURE: RESEARCH 480 NSERC’s HydroNet: A National Research Network 509 SECOND CALL FOR PAPERS to Promote Sustainable Hydropower and Healthy Aquatic Ecosystems AWARDS Objectives of HydroNet, and an overview of the ongoing and future research activities that will be conducted by the 511 The Steven Berkeley Marine Conservation network. Fellowship Winners Karen E. Smokorowski, Normand Bergeron, Daniel Boisclair, Keith Clarke, Steven Cooke, Rick Cunjak, Jeff Dawson, Brett OBITUARY Eaton, Faye Hicks,
    [Show full text]
  • Brazos Dwarf Crayfish (Cambarellus Texanus) Ecological Risk Screening Summary
    Brazos Dwarf Crayfish (Cambarellus texanus) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2014 Revised, October 2016 Web Version, 11/17/2017 Photo: © Keith A. Crandall. Licensed under Creative Commons Attribution-NonCommercial- ShareAlike License. Available: http://tolweb.org/Cambarellus_(Pandicambarus)_texanus. (October 2016). 1 Native Range and Status in the United States Native Range From Fetzner (2016): “East of the Lavaca River and Bay to the Brazos River drainage system, Texas.” Status in the United States From Alvarez et al. (2010): “This species was first found in a ditch near Bay City in Matagorda County, Texas. It has since been found in the Colorado River, Fort Bend County, and Waller County. It is thought that the range is bound by the Lavaca River and Bay on the west, though the northward and eastward range limits are not known (Albaugh and Black 1973).” “This species has been collected from 31 sites and is believed to be common at most sites (D. Johnson pers. comm. 2009).” 1 Means of Introductions in the United States This species has not been reported as introduced outside of its native range in the United States. Remarks From NatureServe (2015): “It is found only in Texas in a small range near the central Texas coast (Johnson and Johnson, 2008). It has a larger range than Cambarellus ninae, but does occur in an area that is experiencing urban growth; however populations appear stable and there is no evidence of decline.” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS
    [Show full text]
  • Development of Tolerance Values for Kentucky Crayfishes
    Development of Tolerance Values for Kentucky Crayfishes Kentucky Environmental and Public Protection Cabinet Department for Environmental Protection Division of Water Water Quality Branch Watershed Management Branch 2004 Cover photograph description: Cambarus dubius, Morgan County, Kentucky Suggested Citation: Peake, D.R., G.J. Pond, and S.E. McMurray. 2004. Development of tolerance values for Kentucky crayfishes. Kentucky Environmental and Public Protection Cabinet, Department for Environmental Protection, Division of Water, Frankfort. The Environmental and Public Protection Cabinet (EPPC) does not discriminate on the basis of race, color, national origin, sex, age, religion, or disability. The EPPC will provide, on request, reasonable accommodations including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs and activities. To request materials in an alternative format, contact the Kentucky Division of Water, 14 Reilly Road, Frankfort, KY, 40601 or call (502) 564-3410. Hearing and speech-impaired persons can contact the agency by using the Kentucky Relay Service, a toll-free telecommunications device for the deaf (TDD). For voice to TDD, call 800-648- 6057. For TDD to voice, call 800-648-6056. Funding for this project was provided in part by a grant from the U.S. Environmental Protection Agency (USEPA) to the Kentucky Division of Water, Nonpoint Source Section, as authorized by the Clean Water Act Amendments of 1987, §319(h) Nonpoint Source Implementation Grant # C9994861-01. Mention of trade names or commercial products, if any, does not constitute endorsement. This document was printed on recycled paper. Development of Tolerance Values for Kentucky Crayfishes By Daniel R.
    [Show full text]
  • Endangered Species Act Section 7 Consultation Final Programmatic
    Endangered Species Act Section 7 Consultation Final Programmatic Biological Opinion and Conference Opinion on the United States Department of the Interior Office of Surface Mining Reclamation and Enforcement’s Surface Mining Control and Reclamation Act Title V Regulatory Program U.S. Fish and Wildlife Service Ecological Services Program Division of Environmental Review Falls Church, Virginia October 16, 2020 Table of Contents 1 Introduction .......................................................................................................................3 2 Consultation History .........................................................................................................4 3 Background .......................................................................................................................5 4 Description of the Action ...................................................................................................7 The Mining Process .............................................................................................................. 8 4.1.1 Exploration ........................................................................................................................ 8 4.1.2 Erosion and Sedimentation Controls .................................................................................. 9 4.1.3 Clearing and Grubbing ....................................................................................................... 9 4.1.4 Excavation of Overburden and Coal ................................................................................
    [Show full text]
  • Species of Greatest Conservation Need
    APPENDIX A. VIRGINIA SPECIES OF GREATEST CONSERVATION NEED Taxa Common Scientific Name Tier Cons. Opp. Habitat Descriptive Habitat Notes Name Ranking Amphibians Barking Hyla gratiosa II a Forest Forests near or within The Virginia Fish and Wildlife Information System indicates treefrog shallow wetlands the loss suitable wetlands constitute the greatest threats to this species. DGIF recommends working to maintain or restore forested buffers surrounding occupied wetlands. These needs are consistent with action plan priorities to conserve and restore wetland habitats and associated buffers. Recently discovered populations within its known range, may indicate this species is more abundant than previously believed. An in-depth investigation into its status may warrant delisting. This species will be prioritized as Tier 2a. Amphibians Blue Ridge Desmognathus IV c Forest High elevation seeps, This species' distribution is very limited. Other than limiting dusky orestes streams, wet rock faces, logging activity in the occupied areas, no conservation salamander and riparian forests actions have been identified. Unless other threats or actions are identified, this species will be listed as Tier 4c. Amphibians Blue Ridge Eurycea III a Wetland Mountain streams and The needs of this species are consistent with priorities for two-lined wilderae adjacent riparian areas maintaining and enhancing riparian forests and aquatic salamander with mixed hardwood or habitats. This species will be listed as Tier 3a. spruce-fir forests up to 6000 feet. Amphibians Carpenter Lithobates III a Wetland Freshwater wetlands with The needs of this species are consistent with action plan frog virgatipes sphagnum moss priorities to preserve and restore aquatic and wetland habitats and water quality.
    [Show full text]