Studies on the Effects of Plant Variety and Root Exudate Compounds on the Soil Microbial Community

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Effects of Plant Variety and Root Exudate Compounds on the Soil Microbial Community University of Kentucky UKnowledge Theses and Dissertations--Plant and Soil Sciences Plant and Soil Sciences 2015 STUDIES ON THE EFFECTS OF PLANT VARIETY AND ROOT EXUDATE COMPOUNDS ON THE SOIL MICROBIAL COMMUNITY Márton Szoboszlay University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Szoboszlay, Márton, "STUDIES ON THE EFFECTS OF PLANT VARIETY AND ROOT EXUDATE COMPOUNDS ON THE SOIL MICROBIAL COMMUNITY" (2015). Theses and Dissertations--Plant and Soil Sciences. 71. https://uknowledge.uky.edu/pss_etds/71 This Doctoral Dissertation is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant and Soil Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Márton Szoboszlay, Student Dr. Luke A. Moe, Major Professor Dr. Mark S. Coyne, Director of Graduate Studies STUDIES ON THE EFFECTS OF PLANT VARIETY AND ROOT EXUDATE COMPOUNDS ON THE SOIL MICROBIAL COMMUNITY DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture, Food, and Environment By Márton Szoboszlay Director: Dr. Luke A. Moe, Associate Professor of Plant and Soil Sciences Co-Director: Dr. Elisa M. D’Angelo, Associate Professor of Plant and Soil Sciences Lexington, Kentucky, USA 2015 Copyright © Márton Szoboszlay 2015 ABSTRACT OF DISSERTATION STUDIES ON THE EFFECTS OF PLANT VARIETY AND ROOT EXUDATE COMPOUNDS ON THE SOIL MICROBIAL COMMUNITY Plants modify the soil environment through their root system, changing its physical properties and exuding compounds that promote or inhibit the growth of certain microorganisms. Therefore the structure of the soil microbial community is different in the rhizosphere than in the bulk soil. This dissertation introduces three research projects that investigated the effects of specific root exudate compounds on the soil microbial community structure, and plant cultivar specific differences in the rhizosphere microbiota. The progenitor of maize is Balsas teosinte (Zea mays subsp. parviglumis). In a greenhouse experiment we compared the structure and function of its bacterial and fungal rhizosphere community with that of domesticated corn cultivars sweet corn and popping corn by terminal restriction fragment length polymorphism, fatty acid methyl ester analysis, and soil enzyme assays. The results allude to functional and structural differences in the rhizosphere microbial communities of the corn varieties that could lead to useful discoveries on how corn domestication has altered rhizosphere processes. To study how root exudate flavonoids 7,4′-dihydroxyflavone and naringenin influence the soil bacterial community structure we constructed model systems to approximate the flavonoid exudation of Medicago sativa roots. Soil samples from the model systems were subjected to ATP assays and 16S rRNA gene amplicon sequencing. Our results suggest that 7,4′-dihydroxyflavone can interact with a diverse range of soil bacteria, including members of Acidobacteria subdivision 4, Gaiellales, Nocardioidaceae, and Thermomonosporaceae and may have other functions in the rhizosphere in addition to nod-gene induction in the legume–rhizobia symbiosis. Hydroxyproline is the most common amino acid in plant cell wall proteins and serves as an important carbon and nitrogen source for soil bacteria. We treated soil with the L or the D enantiomer of hydroxyproline and collected samples for 16S rRNA gene amplicon sequencing three and seven days after the treatment. The L- and D-hydroxyproline treatments induced very similar responses in the bacterial community structure, but there were several differentially abundant groups. Our results inform about the role of hydroxyproline in shaping the soil microbial community in the rhizosphere and about the catabolism of its enantiomers in the soil. Keywords: Maize rhizosphere 7,4′-dihydroxyflavone Naringenin Hydroxyproline Soil bacterial community structure Márton Szoboszlay Student’s Signature 2015. 11. 20. Date STUDIES ON THE EFFECTS OF PLANT VARIETY AND ROOT EXUDATE COMPOUNDS ON THE SOIL MICROBIAL COMMUNITY By Márton Szoboszlay Dr. Luke A. Moe Director of Dissertation Dr. Elisa M. D’Angelo Co-Director of Dissertation Dr. Mark S. Coyne Director of Graduate Studies 2015. 11. 20. DEDICATION I’d like to dedicate this dissertation to You but only if you promise to read it all. ACKNOWLEDGMENTS I owe thanks to many of my teachers, peers, and students from the University of Kentucky who helped me in my professional development. I wouldn’t have been able to do this work without them. I’m especially grateful to the members of Moe-lab: to Ran for showing me a Mongolian wedding, to Ben for teaching me how yeast can be a pet, to Audrey for the oatmeal cookie recipe that actually works, to Qing for one Chinese word a day, to Ruth for explaining why scales are on a fish and not in the media room, to Muhammad for the ride to Lisle, to Atanas for the plate, mug, and bowl I practically stole from him, and to Alison for inviting me to the house of bunnies and frogs. I also have to thank Jenny, Jola, and Abbe from AGTC for the honorary membership and the comfy chair that allowed me to fall asleep while working on the T-RFLP data. These things may seem insignificant compared to all the professional teaching and advice I received from members of our lab and department, but they helped me greatly to stay in Lexington long enough to finish this work. Last but not least, I’d like to thank Luke for betting on the unknown (i.e. hiring me). iii TABLE OF CONTENTS Acknowledgments ............................................................................................................................... iii Table of contents ................................................................................................................................. iv List of tables ......................................................................................................................................... vi List of figures ..................................................................................................................................... viii List of files ............................................................................................................................................ ix Chapter 1: Comparison of rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars ................................................................................................................ 1 Introduction ............................................................................................................................ 1 Materials and methods ........................................................................................................... 2 Maize cultivars and teosinte..................................................................................... 2 Soil properties ............................................................................................................ 3 Plant growth conditions and rhizosphere sampling ............................................. 3 T-RFLP analysis for examining bacterial and fungal community structure ..... 4 Fatty acid methyl ester (FAME) analysis ............................................................... 6 Extracellular enzyme assays ..................................................................................... 7 Statistical analysis .................................................................................................... 10 Results .................................................................................................................................... 11 Bacterial and fungal community structure via T-RFLP ..................................... 11 Microbial
Recommended publications
  • Patterns, Processes and Models of Microbial Recovery in a Chronosequence Following Reforestation of Reclaimed Mine Soils
    PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Crop and Soil Environmental Sciences Brian Badgley, Chair Song Li Brian Strahm Michael Strickland Carl Zipper Virginia Polytechnic Institute and State University Blacksburg, Virginia July 2017 Keywords: soil microorganism, recovery, chronosequence, reclaimed mine soils, amplicon sequencing, shotgun metagenomics, bacterial co-occurrence groups, artificial neural network PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Abstract Soil microbial communities mediate important ecological processes and play essential roles in biogeochemical cycling. Ecosystem disturbances such as surface mining significantly alter soil microbial communities, which could lead to changes or impairment of ecosystem functions. Reforestation procedures were designed to accelerate the reestablishment of plant community and the recovery of the forest ecosystem after reclamation. However, the microbial recovery during reforestation has not been well studied even though this information is essential for evaluating ecosystem restoration success. In addition, the similar starting conditions of mining sites of different ages facilitate a chronosequence approach for studying decades-long microbial community change, which could help generalize theories about ecosystem succession. In this study, the recovery of microbial communities in a chronosequence of reclaimed mine sites spanning 30 years post reforestation along with unmined reference sites was analyzed using next-generation sequencing to characterize soil-microbial abundance, richness, taxonomic composition, interaction patterns and functional genes.
    [Show full text]
  • Successful Drug Discovery Informed by Actinobacterial Systematics
    Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs.
    [Show full text]
  • Coffee Microbiota and Its Potential Use in Sustainable Crop Management. a Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois
    Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois To cite this version: Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois. Coffee Mi- crobiota and Its Potential Use in Sustainable Crop Management. A Review. Frontiers in Sustainable Food Systems, Frontiers Media, 2020, 4, 10.3389/fsufs.2020.607935. hal-03045648 HAL Id: hal-03045648 https://hal.inrae.fr/hal-03045648 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 03 December 2020 doi: 10.3389/fsufs.2020.607935 Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Benoit Duong 1,2, Pierre Marraccini 2,3, Jean-Luc Maeght 4,5, Philippe Vaast 6, Michel Lebrun 1,2 and Robin Duponnois 1* 1 LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France, 2 LMI RICE-2, Univ. Montpellier, IRD, CIRAD, AGI, USTH, Hanoi, Vietnam, 3 IPME, Univ. Montpellier, CIRAD, IRD, Montpellier, France, 4 AMAP, Univ. Montpellier, IRD, CIRAD, INRAE, CNRS, Montpellier, France, 5 Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Écologie et des Sciences de l’Environnement, IESS, Bondy, France, 6 Eco&Sols, Univ.
    [Show full text]
  • Escherichia Coli, Fusarium Proliferatum, F
    ใบรับรองวิทยานิพนธ์ บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ วิทยาศาสตรมหาบัณฑิต (พันธุศาสตร์) ปริญญา พันธุศาสตร์ พันธุศาสตร์ สาขา ภาควิชา เรื่อง การวิเคราะห์ลักษณะและติดตามแอคติโนมัยสีทเอนโดไฟต์ที่คัดแยกจากกระถินณรงค์ (Acacia auriculiformis A. Cunn. ex Benth.) โดยเทคนิคทางโมเลกุล Characterization and Monitoring of Endophytic Actinomycetes Isolated from Wattle tree (Acacia auriculiformis A. Cunn. ex Benth.) Using Molecular Techniques นามผู้วิจัย นายชาคริต บุญอยู่ ได้พิจารณาเห็นชอบโดย อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก วิทยา ( รองศาสตราจารย์อรินทิพย์ ธรรมชัยพิเนต, Ph.D. ) อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม ( ผู้ช่วยศาสตราจารย์วิภา หงษ์ตระกูล, Ph.D. ) หัวหน้าภาควิชา ( รองศาสตราจารย์เลิศลักษณ์ เงินศิริ, Ph.D. ) บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์รับรองแล้ว ( รองศาสตราจารย์กัญจนา ธีระกุล, D.Agr. ) คณบดีบัณฑิตวิทยาลัย วันที่ เดือน พ.ศ . กกกกก (Acacia auriculiformis A. Cunn. ex Benth.) ก Characterization and Monitoring of Endophytic Actinomycetes Isolated from Wattle tree (Acacia auriculiformis A. Cunn. ex Benth.) Using Molecular Techniques ก () .. 2553 2553: กกกก ก ( Acacia auriculiformis A. Cunn. ex Benth.) ก () กก: , Ph.D. 90 ก 11 กกกกกก ก 16S rRNA ก Streptomyces, Actinoallomurus, Amycolatopsis, Kribbella and Microbispora กก 5 GMKU 932 Bacillus cereus GMKU 937 GMKU 938 Aspergillus niger GMKU 940 B. cereus, Staphylococcus aureus, Escherichia coli, Fusarium proliferatum, F. moniliforme A. niger GMKU 944 B. cereus, S. aureus, Ralstonia solanacearum A. niger egfp Streptomyces sp. GMKU 937 GMKU 944 กก MS MgCl2 10
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Hungarian University of Agriculture and Life Sciences Doctoral School of Biological Sciences Doctoral (Ph.D) Dissertation Respon
    HUNGARIAN UNIVERSITY OF AGRICULTURE AND LIFE SCIENCES DOCTORAL SCHOOL OF BIOLOGICAL SCIENCES DOCTORAL (PH.D) DISSERTATION RESPONSES OF SOIL CO2 EFFLUX TO BIOTIC AND ABIOTIC DRIVERS IN AGRICULTURAL SOILS BY MALEK INSAF GÖDÖLLŐ 2021 Title: Responses of soil CO2 efflux to biotic and abiotic drivers in agricultural soils Discipline: Biological Sciences Name of Doctoral School: Doctoral School of Biological Sciences Head: Prof. Dr. Zoltán Nagy Department of Plant Physiology and Plant Ecology Institute of Agronomy Hungarian University of Agriculture and Life Sciences, Supervisor 1: Dr: János Balogh, Department of Plant Physiology and Plant Ecology Institute of Agronomy Hungarian University of Agriculture and Life Sciences, Supervisor 2: Prof. Dr. Katalin Andrea Posta Department of Microbiology and Microbial Biotechnology Institute of Genetics and Biotechnology Hungarian University of Agriculture and Life Sciences, ..................................................... ................................................. Approval of Head of Doctoral School Approval of Supervisors TABLE OF CONTENT 1. Introduction: .......................................................................................................................... 1 1.1. Foreword ......................................................................................................................... 1 1.2. Objectives ........................................................................................................................ 3 2. LITERATURE REVIEW ....................................................................................................
    [Show full text]
  • Novel Polyethers from Screening Actinoallomurus Spp
    Article Novel Polyethers from Screening Actinoallomurus spp. Marianna Iorio 1, Arianna Tocchetti 1, Joao Carlos Santos Cruz 2, Giancarlo Del Gatto 1, Cristina Brunati 2, Sonia Ilaria Maffioli 1, Margherita Sosio 1,2 and Stefano Donadio 1,2,* 1 NAICONS Srl, Viale Ortles 22/4, 20139 Milano, Italy; [email protected] (M.I.); [email protected] (A.T.); [email protected] (G.D.G.); [email protected] (S.I.M.); [email protected] (M.S.) 2 KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy; [email protected] (J.C.S.C.); [email protected] (C.B.) * Correspondence: [email protected] Received: 1 May 2018; Accepted: 13 June 2018; Published: 14 June 2018 Abstract: In screening for novel antibiotics, an attractive element of novelty can be represented by screening previously underexplored groups of microorganisms. We report the results of screening 200 strains belonging to the actinobacterial genus Actinoallomurus for their production of antibacterial compounds. When grown under just one condition, about half of the strains produced an extract that was able to inhibit growth of Staphylococcus aureus. We report here on the metabolites produced by 37 strains. In addition to previously reported aminocoumarins, lantibiotics and aromatic polyketides, we described two novel and structurally unrelated polyethers, designated α- 770 and α-823. While we identified only one producer strain of the former polyether, 10 independent Actinoallomurus isolates were found to produce α-823, with the same molecule as main congener. Remarkably, production of α-823 was associated with a common lineage within Actinoallomurus, which includes A. fulvus and A. amamiensis. All polyether producers were isolated from soil samples collected in tropical parts of the world.
    [Show full text]
  • Characterization of Bacterial Species in Steinkopf a Communal Farming Area in South Africa: a Closer Look at Pathogenesis
    Characterization of bacterial species in Steinkopf a communal farming area in South Africa: A closer look at pathogenesis By Jodene Foster Thesis presented in fulfilment of the requirements of the degree Masters of Science at the University of the Western Cape Supervisors: Dr Adriaan Engelbrecht, Dr Morné Du Plessis, Dr Oriel Moeti Taioe Faculty of Natural Science Department of Biodiversity and Conservation Biology April 2019 1 | P a g e http://etd.uwc.ac.za/ Declaration By submitting this thesis/dissertation electronically I declare that the entirety of the work contained therein is my own, original work, and that I have not previously in its entirety or in part submitted it for obtaining any qualification April 2019 Signature: Date: 02/05/2019 2 | P a g e http://etd.uwc.ac.za/ Abstract The human population in sub-Saharan Africa has been increasing due to decreases in mortality rates and increases in average human age; in turn increasing poverty and pressure placed on agriculture and agricultural production. However, livestock production in South Africa, and globally, is declining due to disease and parasite prevalence, lack of feed, poor breeding, marketing management, change in nutrition in both livestock and humans, rapid urbanization, encroachment on wildlife and unfavourable climatic conditions brought about by global change. One unintended consequence has been the emergence and spread of transboundary animal diseases and, more specifically, the resurgence and emergence of zoonotic disease. Zoonotic diseases are sicknesses transmissible from animals to humans, resulting from direct contact or environmental reservoirs. Previous studies have identified small-scale farmers as the group most prevalent to contracting zoonotic diseases, especially those working in a communal dispensation.
    [Show full text]
  • Download (6Mb)
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/81849 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Unlocking the potential of novel taxa – a study on Actinoallomurus João Carlos Santos Cruz Submitted for the degree of Doctor of Philosophy School of Life Sciences, University of Warwick March, 2016 1 TABLE OF CONTENTS Table of Contents .......................................................................................................... i Acknowledgments...................................................................................................... iv List of Figures ................................................................................................................. v List of Tables ................................................................................................................. ix Declaration .................................................................................................................. xi Summary ....................................................................................................................... xii Abbreviations .............................................................................................................
    [Show full text]
  • Tropical Legume Trees and Their Soil-Mineral Microbiome: Biogeochemistry and Routes to Enhanced Mineral Access
    Tropical legume trees and their soil-mineral microbiome: biogeochemistry and routes to enhanced mineral access A thesis submitted by Dimitar Zdravkov Epihov in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in the Department of Animal and Plant Sciences, University of Sheffield October 29th, 2018 1 © Copyright by Dimitar Zdravkov Epihov, 2018. All rights reserved. 2 Acknowledgements First and foremost, I would like to thank my academic superivising team including Professor David J. Beerling and Professor Jonathan R. Leake for their guidance and support throughout my PhD studies as well as the European Research Council (ERC) for funding my project. Secondly, I would like to thank my girlfriend, Gabriela, my parents, Zdravko and Mariyana, and my grandmother Gina, for always believing in me. My biggest gratitude goes for my girlfriend for always putting up with working ridiculous hours and for helping me during field work even if it meant getting stuck in the Australian jungle at night and stumbling across a well-grown python. I would also want to express my thanks to my first ever Biology teacher Mrs Moskova for inspiring and nurturing the interest that grew to be a life-lasting passion, curiousity and love towards all things living. Lastly, I would like to thank Irene Johnson, our laboratory manager and senior technician for always been there for advice, help and general cheering up as well as all other great scientists and collaborators I have had the chance to talk to and work with during my PhD project. I devote this work to a future with more green in it.
    [Show full text]
  • Coffee Microbiota and Its Potential Use in Sustainable Crop Management
    REVIEW published: 03 December 2020 doi: 10.3389/fsufs.2020.607935 Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Benoit Duong 1,2, Pierre Marraccini 2,3, Jean-Luc Maeght 4,5, Philippe Vaast 6, Michel Lebrun 1,2 and Robin Duponnois 1* 1 LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France, 2 LMI RICE-2, Univ. Montpellier, IRD, CIRAD, AGI, USTH, Hanoi, Vietnam, 3 IPME, Univ. Montpellier, CIRAD, IRD, Montpellier, France, 4 AMAP, Univ. Montpellier, IRD, CIRAD, INRAE, CNRS, Montpellier, France, 5 Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Écologie et des Sciences de l’Environnement, IESS, Bondy, France, 6 Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, SupAgro, Montpellier, France Intensive coffee production is accompanied by several environmental issues, including soil degradation, biodiversity loss, and pollution due to the wide use of agrochemical inputs and wastes generated by processing. In addition, climate change is expected to Edited by: decrease the suitability of cultivated areas while potentially increasing the distribution Everlon Cid Rigobelo, São Paulo State University, Brazil and impact of pests and diseases. In this context, the coffee microbiota has been Reviewed by: increasingly studied over the past decades in order to improve the sustainability of the Ugo De Corato, coffee production. Therefore, coffee associated microorganisms have been isolated and Energy and Sustainable Economic characterized in order to highlight their useful characteristics and study their potential Development (ENEA), Italy Erica Lumini, use as sustainable alternatives to agrochemical inputs. Indeed, several microorganisms Italian National Research Council, Italy (including bacteria and fungi) are able to display plant growth-promoting capacities *Correspondence: and/or biocontrol abilities toward coffee pests and diseases.
    [Show full text]