The Genus Actinoallomurus and Some of Its Metabolites

Total Page:16

File Type:pdf, Size:1020Kb

The Genus Actinoallomurus and Some of Its Metabolites The Journal of Antibiotics (2011) 64, 133–139 & 2011 Japan Antibiotics Research Association All rights reserved 0021-8820/11 $32.00 www.nature.com/ja ORIGINAL ARTICLE The genus Actinoallomurus and some of its metabolites Roberta Pozzi1,2, Matteo Simone2,3, Carlo Mazzetti2,3, Sonia Maffioli2, Paolo Monciardini1,4, Linda Cavaletti4, Ruggiero Bamonte4, Margherita Sosio1,2 and Stefano Donadio1,2 In the search for novel antibiotics, natural products continue to represent a valid source of bioactive molecules. During a program aimed at identifying previously unreported taxa of actinomycetes as potential source of novel compounds, we isolated hundreds of different representatives of a new group, initially designated as ‘Alpha’ and independently described as Actinoallomurus. We report on a PCR-specific method for the detection of this taxon, on appropriate growth conditions and on a pilot-screening program on 78 strains. The strains produce antibacterial or antifungal compounds at a relatively high frequency. Four strains were characterized in further detail: one produced the aromatic polyketide benanomicin B and its dexylosyl derivative; a second strain produced N-butylbenzenesulfonamide; a third strain was an efficient converter of soymeal isoflavonoids from soymeal constituents; and a fourth strain produced several coumermycin-related aminocoumarins, with coumermycin A2 as the major peak, and with some new congeners as minor components of the complex. These data suggest that Actinoallomurus strains possess several pathways for secondary metabolism and represent an attractive source in the search for novel antibiotics. The Journal of Antibiotics (2011) 64, 133–139; doi:10.1038/ja.2010.149; published online 1 December 2010 Keywords: actinomycetes; screening; secondary metabolites INTRODUCTION identification of several new taxa,7 three of which have been subseq- New antibiotics are urgently needed because of the increasing spread uently formally described.8–10 During that program we were also able of resistant pathogens and the evolution of new diseases. As microbial to isolate hundreds of different strains provisionally designated as genomes, synthetic libraries and high throughput screening have so ‘Alpha’, whose phylogenetic position suggested a new taxon within the far failed to produce a significant number of developmental candidates Actinobacteria.7 Independently, phylogenetically related strains have in the antibacterial field, it is generally acknowledged that nature will been assigned to the recently described genus Actinoallomurus.11 continue to be a significant source of novel bioactive compounds,1 We present here a characterization of ‘Alpha’ strains present in our as confirmed by a recent survey of antibiotics under clinical develop- collections, in terms of their potential to produce secondary metabo- ment.2 However, in a background of several thousands of known lites. The results from a small pilot study suggest that the genus microbial metabolites, it is necessary to introduce new strategies for Actinoallomurus has the potential to produce metabolites arising from accessing microbial strains to increase the probability of finding novel different biosynthetic pathways. compounds. Chemical screening3 and, more recently, genome mining4 are alternatives to the traditional bioassay-guided screening. In the RESULTS latter case, the probability of finding new compounds may be In the course of isolation programs, aimed at identifying actinomy- increased by the use of novel assays, of novel microorganisms or by cetes belonging to new taxa,7 we isolated from soil samples several the mere size of the library to be screened.5 In any case, dedicated actinomycete strains, with branching aerial hyphae that, as observed efforts are providing novel metabolites.6 by light microscopy on agar plates, differentiated into single spore In the past years, our attention has been drawn to previously chains along the aerial mycelium, reminiscent of some Actinomadura uncultured actinomycetes, under the assumption that strains belong- strains. Most of the strains were able to grow in the 30–37 1C ing to novel taxa, which are however phylogenetically related to temperature range at an optimal pH of 5.5. Phylogenetic analysis of prolific producers of secondary metabolites, have a high chance of selected strains indicated they belong to the recently described genus possessing diverse pathways in secondary metabolism and of affording Actinoallomurus within the Thermomonosporaceae.11 Furthermore, on novel compounds.7 A 16S-guided isolation program led to the 16S rRNA analysis, we were able to subdivide 115 strains in 32 ‘Alp’ 1KtedoGen Srl, Milano, Italy; 2NAICONS Scrl, Milano, Italy; 3ITB-CNR, Segrate, Italy and 4Vicuron Pharmaceuticals, Gerenzano, Italy Correspondence: Dr S Donadio, NAICONS Scrl, Via Fantoli 16/15, 20138 Milano, Italy. E-mail: [email protected] Dedicated to late Dr C Richard Hutchinson for his exceptional contributions to natural product biosynthesis, engineering and drug discovery. Received 3 October 2010; revised 27 October 2010; accepted 1 November 2010; published online 1 December 2010 Actinoallomurus: source of bioactive metabolites RPozziet al 134 phylotypes (Figure 1), indicating a substantial diversity within 78 different strains belonging to 26 different phylotypes. About 30% this genus. of the tested strains showed at least an antimicrobial activity in our For the rapid identification of novel isolates, we developed an conditions (Table 1). These results prompted us to further investigate Actinoallomurus-specific PCR method (see Methods). When we these strains and identify the bioactive metabolites produced. Here, we applied this method to soil samples, about 25% of soil DNA prepara- report the metabolites identified from four strains belonging to tions yielded a band of the expected size,7 suggesting that Actino- different phylotypes. The data are summarized in Table 2. allomurus strains may be quite cosmopolitan. Consistently, strains with an alpha-type morphology were isolated from many different Strain K15 soils, and the PCR method proved an effective tool for rapidly Strain K15 produced an antifungal activity and a diffusible red assigning most of them to Actinoallomurus. pigment. In all tested media, it showed good growth, and production The Thermomonosporaceae family currently comprises five genera of the red pigment and of the antifungal activity, both of which could but, to our knowledge, only strains belonging to the genus Actinoma- be efficiently recovered from the mycelium by MeOH extraction. dura have been reported to produce secondary metabolites. To HPLC fractionation of the MeOH extract, followed by LC-MS of the evaluate the ability of Actinoallomurus strains to produce bioactive active fractions, led to the identification of two peaks eluting at 14.5 compounds, we identified suitable growth conditions (see Methods). and 16.0 mins, containing the major antifungal activity (Figure 3). Examples of HPLC profiles are reported in Figure 2: different strains These peaks exhibited UV-VIS maxima at 500 nm and showed [MH+] yielded different profiles, suggesting production of different secondary of 827 and 696 m/z, respectively. Searches in the ABL database metabolites. Next, a pilot-screening program was carried out on identified the antifungal compounds benanomicin B and its dexylosyl Actinomadura alba YIM 45681T (DQ985164) Actinoallomurus purpureus NBRC 103687T (AB364588) 94 Alp2 Alp21 98 Alp11 Actinoallomurus luridus NBRC 103683T (AB364585) Alp20 Actinoallomurus spadix NBRC 14099T (AB364581) Alp3 100 Alp4 Alp33 Alp10 Alp31 Alp13 Alp24 87 Alp25 Alp34 Alp14 Alp18 Actinoallomurus coprocola NBRC 103688T (AB364579) Alp15 Actinoallomurus iriomotensis NBRC 103685T (AB364586) Alp28 Alp22 Alp27 Alp7 99 Alp8 Alp19 Alp17 Alp23 99 Alp9 Alp26 Alp30 Alp16 Actinoallomurus caesius NBRC 103678T (AB364589) Actinoallomurus amamiensis NBRC 103682T (AB364583)c 90 Actinoallomurus fulvus NBRC 103680T (AB364582) Alp32 Alp12 Alp6 99 Alp5 Actinoallomurus yoronensis NBRC 103686T (AB364584) Spirillospora rubra JCM6875T (AF163123) Actinomadura catellatispora NBRC 16341 (AF154127) Actinomadura madurae IFO 14623T (D85468) Actinomadura chokoriensis JCM 13932T (AB331730) Actinomadura latina DSM 43382T (AY035998) Actinomadura nitritigenes DSM 44137T (AY035999) Actinomadura latina DSM 43382T (AY035998) Spirillospora albida IFO 12248T (D85498) Actinomadura miaoliensis (EF116925) Actinomadura kijaniata DSM 43764T (X97890) Actinocorallia cavernae JCM13278T (AY966427) 96 100 Actinocorallia aurea IFO 14752T (AB006177) Actinocorallia herbida IFO 15485T (D85473) Thermomonospora curvata IFO 15933T (D86945) Actinomadura echinospora DSM 43163T (AJ420135) Figure 1 The ‘Alp’ phylotypes within Actinoallomurus. Phylogenetic tree of one representative from each Alp phylotype, nine Actinoallomurus species and selected representatives of other Thermomonosporaceae genera. The Journal of Antibiotics Actinoallomurus: source of bioactive metabolites RPozziet al 135 Table 2 Summary of analyzed strains Alp strain Phylotype Original bioactivity Identified metabolite(s) K15 Alp13 C. albicans Benanomicin B K216 Alp25 S. aureus N-Butylbenzenesulphonamide K241 Alp16 S. aureus Genistein and related compounds K275 Alp18 S. aureus Coumermycins Abbreviation: Alp, Alpha. de novo biosynthesis.16 Consistently, HPLC analyses of organic extracts from strain K241 grown in INA5 medium containing 5 g lÀ1 instead of 15 g lÀ1 of soybean flour showed a corresponding decrease in the Figure 2 HPLC profiles
Recommended publications
  • Patterns, Processes and Models of Microbial Recovery in a Chronosequence Following Reforestation of Reclaimed Mine Soils
    PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Crop and Soil Environmental Sciences Brian Badgley, Chair Song Li Brian Strahm Michael Strickland Carl Zipper Virginia Polytechnic Institute and State University Blacksburg, Virginia July 2017 Keywords: soil microorganism, recovery, chronosequence, reclaimed mine soils, amplicon sequencing, shotgun metagenomics, bacterial co-occurrence groups, artificial neural network PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Abstract Soil microbial communities mediate important ecological processes and play essential roles in biogeochemical cycling. Ecosystem disturbances such as surface mining significantly alter soil microbial communities, which could lead to changes or impairment of ecosystem functions. Reforestation procedures were designed to accelerate the reestablishment of plant community and the recovery of the forest ecosystem after reclamation. However, the microbial recovery during reforestation has not been well studied even though this information is essential for evaluating ecosystem restoration success. In addition, the similar starting conditions of mining sites of different ages facilitate a chronosequence approach for studying decades-long microbial community change, which could help generalize theories about ecosystem succession. In this study, the recovery of microbial communities in a chronosequence of reclaimed mine sites spanning 30 years post reforestation along with unmined reference sites was analyzed using next-generation sequencing to characterize soil-microbial abundance, richness, taxonomic composition, interaction patterns and functional genes.
    [Show full text]
  • Download Download
    http://wjst.wu.ac.th Natural Sciences Diversity Analysis of an Extremely Acidic Soil in a Layer of Coal Mine Detected the Occurrence of Rare Actinobacteria Megga Ratnasari PIKOLI1,*, Irawan SUGORO2 and Suharti3 1Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Ciputat, Tangerang Selatan, Indonesia 2Center for Application of Technology of Isotope and Radiation, Badan Tenaga Nuklir Nasional, Jakarta Selatan, Indonesia 3Department of Chemistry, Faculty of Science and Computation, Universitas Pertamina, Simprug, Jakarta Selatan, Indonesia (*Corresponding author’s e-mail: [email protected], [email protected]) Received: 7 September 2017, Revised: 11 September 2018, Accepted: 29 October 2018 Abstract Studies that explore the diversity of microorganisms in unusual (extreme) environments have become more common. Our research aims to predict the diversity of bacteria that inhabit an extreme environment, a coal mine’s soil with pH of 2.93. Soil samples were collected from the soil at a depth of 12 meters from the surface, which is a clay layer adjacent to a coal seam in Tanjung Enim, South Sumatera, Indonesia. A culture-independent method, the polymerase chain reaction based denaturing gradient gel electrophoresis, was used to amplify the 16S rRNA gene to detect the viable-but-unculturable bacteria. Results showed that some OTUs that have never been found in the coal environment and which have phylogenetic relationships to the rare actinobacteria Actinomadura, Actinoallomurus, Actinospica, Streptacidiphilus, Aciditerrimonas, and Ferrimicrobium. Accordingly, the highly acidic soil in the coal mine is a source of rare actinobacteria that can be explored further to obtain bioactive compounds for the benefit of biotechnology.
    [Show full text]
  • Successful Drug Discovery Informed by Actinobacterial Systematics
    Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • The Shiga Toxin Producing Escherichia Coli
    microorganisms Review An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli Panagiotis Sapountzis 1,* , Audrey Segura 1,2 , Mickaël Desvaux 1 and Evelyne Forano 1 1 Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; [email protected] (A.S.); [email protected] (M.D.); [email protected] (E.F.) 2 Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark * Correspondence: [email protected] Received: 22 May 2020; Accepted: 7 June 2020; Published: 10 June 2020 Abstract: For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle. Keywords: cattle; STEC colonization; microbiota; bacterial interactions 1. Introduction The domestication of cattle, approximately 10,000 years ago [1], brought a stable supply of protein to the human diet, which was instrumental for the building of our societies.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Suppl Table 2
    Table S2. Large subunit rRNA gene sequences of Bacteria and Eukarya from V5. ["n" indicates information not specified in the NCBI GenBank database.] Accession number Q length Q start Q end e-value %-ident %-sim GI number Domain Phylum Family Genus / Species JQ997197 529 30 519 3E-165 89% 89% 48728139 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997198 732 17 128 2E-35 93% 93% 48728167 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997196 521 26 506 4E-95 81% 81% 48728178 Bacteria Actinobacteria Frankiaceae uncultured Frankia sp. JQ997274 369 8 54 4E-14 100% 100% 289551862 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium abscessus JQ999637 486 5 321 7E-62 82% 82% 269314044 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium immunoGenum JQ999638 554 17 509 0 92% 92% 44368 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium kansasii JQ999639 552 18 455 0 93% 93% 196174916 Bacteria Actinobacteria Mycobacteriaceae Mycobacterium sHottsii JQ997284 598 5 598 0 90% 90% 2414571 Bacteria Actinobacteria Propionibacteriaceae Propionibacterium freudenreicHii JQ999640 567 14 560 8E-152 85% 85% 6714990 Bacteria Actinobacteria THermomonosporaceae Actinoallomurus spadix JQ997287 501 8 306 4E-119 93% 93% 5901576 Bacteria Actinobacteria THermomonosporaceae THermomonospora cHromoGena JQ999641 332 26 295 8E-115 95% 95% 291045144 Bacteria Actinobacteria Bifidobacteriaceae Bifidobacterium bifidum JQ999642 349 19 255 5E-82 90% 90% 30313593 Bacteria Bacteroidetes Bacteroidaceae Bacteroides caccae JQ997308 588 20 582 0 90%
    [Show full text]
  • Coffee Microbiota and Its Potential Use in Sustainable Crop Management. a Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois
    Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois To cite this version: Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois. Coffee Mi- crobiota and Its Potential Use in Sustainable Crop Management. A Review. Frontiers in Sustainable Food Systems, Frontiers Media, 2020, 4, 10.3389/fsufs.2020.607935. hal-03045648 HAL Id: hal-03045648 https://hal.inrae.fr/hal-03045648 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 03 December 2020 doi: 10.3389/fsufs.2020.607935 Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Benoit Duong 1,2, Pierre Marraccini 2,3, Jean-Luc Maeght 4,5, Philippe Vaast 6, Michel Lebrun 1,2 and Robin Duponnois 1* 1 LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France, 2 LMI RICE-2, Univ. Montpellier, IRD, CIRAD, AGI, USTH, Hanoi, Vietnam, 3 IPME, Univ. Montpellier, CIRAD, IRD, Montpellier, France, 4 AMAP, Univ. Montpellier, IRD, CIRAD, INRAE, CNRS, Montpellier, France, 5 Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Écologie et des Sciences de l’Environnement, IESS, Bondy, France, 6 Eco&Sols, Univ.
    [Show full text]
  • Escherichia Coli, Fusarium Proliferatum, F
    ใบรับรองวิทยานิพนธ์ บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ วิทยาศาสตรมหาบัณฑิต (พันธุศาสตร์) ปริญญา พันธุศาสตร์ พันธุศาสตร์ สาขา ภาควิชา เรื่อง การวิเคราะห์ลักษณะและติดตามแอคติโนมัยสีทเอนโดไฟต์ที่คัดแยกจากกระถินณรงค์ (Acacia auriculiformis A. Cunn. ex Benth.) โดยเทคนิคทางโมเลกุล Characterization and Monitoring of Endophytic Actinomycetes Isolated from Wattle tree (Acacia auriculiformis A. Cunn. ex Benth.) Using Molecular Techniques นามผู้วิจัย นายชาคริต บุญอยู่ ได้พิจารณาเห็นชอบโดย อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก วิทยา ( รองศาสตราจารย์อรินทิพย์ ธรรมชัยพิเนต, Ph.D. ) อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม ( ผู้ช่วยศาสตราจารย์วิภา หงษ์ตระกูล, Ph.D. ) หัวหน้าภาควิชา ( รองศาสตราจารย์เลิศลักษณ์ เงินศิริ, Ph.D. ) บัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์รับรองแล้ว ( รองศาสตราจารย์กัญจนา ธีระกุล, D.Agr. ) คณบดีบัณฑิตวิทยาลัย วันที่ เดือน พ.ศ . กกกกก (Acacia auriculiformis A. Cunn. ex Benth.) ก Characterization and Monitoring of Endophytic Actinomycetes Isolated from Wattle tree (Acacia auriculiformis A. Cunn. ex Benth.) Using Molecular Techniques ก () .. 2553 2553: กกกก ก ( Acacia auriculiformis A. Cunn. ex Benth.) ก () กก: , Ph.D. 90 ก 11 กกกกกก ก 16S rRNA ก Streptomyces, Actinoallomurus, Amycolatopsis, Kribbella and Microbispora กก 5 GMKU 932 Bacillus cereus GMKU 937 GMKU 938 Aspergillus niger GMKU 940 B. cereus, Staphylococcus aureus, Escherichia coli, Fusarium proliferatum, F. moniliforme A. niger GMKU 944 B. cereus, S. aureus, Ralstonia solanacearum A. niger egfp Streptomyces sp. GMKU 937 GMKU 944 กก MS MgCl2 10
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]