Coffee Microbiota and Its Potential Use in Sustainable Crop Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patterns, Processes and Models of Microbial Recovery in a Chronosequence Following Reforestation of Reclaimed Mine Soils
PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Crop and Soil Environmental Sciences Brian Badgley, Chair Song Li Brian Strahm Michael Strickland Carl Zipper Virginia Polytechnic Institute and State University Blacksburg, Virginia July 2017 Keywords: soil microorganism, recovery, chronosequence, reclaimed mine soils, amplicon sequencing, shotgun metagenomics, bacterial co-occurrence groups, artificial neural network PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Abstract Soil microbial communities mediate important ecological processes and play essential roles in biogeochemical cycling. Ecosystem disturbances such as surface mining significantly alter soil microbial communities, which could lead to changes or impairment of ecosystem functions. Reforestation procedures were designed to accelerate the reestablishment of plant community and the recovery of the forest ecosystem after reclamation. However, the microbial recovery during reforestation has not been well studied even though this information is essential for evaluating ecosystem restoration success. In addition, the similar starting conditions of mining sites of different ages facilitate a chronosequence approach for studying decades-long microbial community change, which could help generalize theories about ecosystem succession. In this study, the recovery of microbial communities in a chronosequence of reclaimed mine sites spanning 30 years post reforestation along with unmined reference sites was analyzed using next-generation sequencing to characterize soil-microbial abundance, richness, taxonomic composition, interaction patterns and functional genes. -
Identification of Strains Isolated in Thailand and Assigned to the Genera Kozakia and Swaminathania
JOURNAL OF CULTURE COLLECTIONS Volume 6, 2008-2009, pp. 61-68 IDENTIFICATION OF STRAINS ISOLATED IN THAILAND AND ASSIGNED TO THE GENERA KOZAKIA AND SWAMINATHANIA Jintana Kommanee1, Somboon Tanasupawat1,*, Ancharida Akaracharanya2, Taweesak Malimas3, Pattaraporn Yukphan3, Yuki Muramatsu4, Yasuyoshi Nakagawa4 and Yuzo Yamada3,† 1Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; 2Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; 3BIOTEC Culture Collection, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand; 4Biological Resource Center, Department of Biotechnology, National Institute of Technology and Evaluation, Kisarazu 292-0818, Japan; †JICA Senior Overseas Volunteer, Japan International Cooperation Agency, Shibuya-ku, Tokyo 151-8558, Japan; Professor Emeritus, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan *Corresponding author, e-mail: [email protected] Summary Four isolates, isolated from fruit of sapodilla collected at Chantaburi and designated as CT8-1 and CT8-2, and isolated from seeds of ixora („khem” in Thai, Ixora species) collected at Rayong and designated as SI15-1 and SI15-2, were examined taxonomically. The four isolates were selected from a total of 181 isolated acetic acid bacteria. Isolates CT8-1 and CT8-2 were non motile and produced a levan-like mucous polysaccharide from sucrose or D-fructose, but did not produce a water-soluble brown pigment from D-glucose on CaCO3-containing agar slants. The isolates produced acetic acid from ethanol and oxidized acetate and lactate to carbon dioxide and water, but the intensity of the acetate and lactate oxidation was weak. Their growth was not inhibited by 0.35 % acetic acid (v/v) at pH 3.5. -
Successful Drug Discovery Informed by Actinobacterial Systematics
Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs. -
Diversity of Culturable Bacteria Including Pantoea in Wild Mosquito Aedes Albopictus Claire Valiente Moro, Florence-Hélène Tran, F
Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavingui To cite this version: Claire Valiente Moro, Florence-Hélène Tran, F. N. Raharimalala, P. Ravelonandro, Patrick Mavin- gui. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiology, BioMed Central, 2013, 13 (1), pp.70. 10.1186/1471-2180-13-70. hal-02522192 HAL Id: hal-02522192 https://hal-univ-lyon1.archives-ouvertes.fr/hal-02522192 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Valiente Moro et al. BMC Microbiology 2013, 13:70 http://www.biomedcentral.com/1471-2180/13/70 RESEARCH ARTICLE Open Access Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus Claire Valiente Moro1,2*, Florence Hélène Tran1,2, Fara Nantenaina Raharimalala3,5, Pierre Ravelonandro4 and Patrick Mavingui1,2 Abstract Background: The microbiota has been shown to play an important role in the biology of insects. In recent decades, significant efforts have been made to better understand the diversity of symbiotic bacteria associated with mosquitoes and assess their influence on pathogen transmission. -
Corynebacterium Sp.|NML98-0116
1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated. -
Ameyamaea Chiangmaiensis Gen. Nov., Sp. Nov., an Acetic Acid Bacterium in the -Proteobacteria
Biosci. Biotechnol. Biochem., 73 (10), 2156–2162, 2009 Ameyamaea chiangmaiensis gen. nov., sp. nov., an Acetic Acid Bacterium in the -Proteobacteria Pattaraporn YUKPHAN,1 Taweesak MALIMAS,1 Yuki MURAMATSU,2 Mai TAKAHASHI,2 Mika KANEYASU,2 Wanchern POTACHAROEN,1 Somboon TANASUPAWAT,3 Yasuyoshi NAKAGAWA,2 Koei HAMANA,4 Yasutaka TAHARA,5 Ken-ichiro SUZUKI,2 y Morakot TANTICHAROEN,1 and Yuzo YAMADA1; ,* 1BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand 2Biological Resource Center (NBRC), Department of Biotechnology, National Institute of Technology and Evaluation (NITE), Kisarazu 292-0818, Japan 3Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand 4School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi 371-8514, Japan 5Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan Received January 27, 2009; Accepted July 8, 2009; Online Publication, October 7, 2009 [doi:10.1271/bbb.90070] Two isolates, AC04T and AC05, were isolated from Key words: Ameyamaea chiagmaiensis gen. nov., sp. the flowers of red ginger collected in Chiang Mai, nov.; acetic acid bacteria; 16S rRNA gene Thailand. In phylogenetic trees based on 16S rRNA sequences; 16S rRNA gene restriction anal- gene sequences, the two isolates were included within a ysis; Acetobacteraceae lineage comprised of the genera Acidomonas, Glucona- cetobacter, Asaia, Kozakia, Swaminathania, Neoasaia, In acetic acid bacteria, several new genera have been Granulibacter, and Tanticharoenia, and they formed an reported for strains isolated from isolation sources independent cluster along with the type strain of obtained in Southeast Asia. The first was the genus Tanticharoenia sakaeratensis. -
Dissection of Exopolysaccharide Biosynthesis in Kozakia Baliensis Julia U
Brandt et al. Microb Cell Fact (2016) 15:170 DOI 10.1186/s12934-016-0572-x Microbial Cell Factories RESEARCH Open Access Dissection of exopolysaccharide biosynthesis in Kozakia baliensis Julia U. Brandt, Frank Jakob*, Jürgen Behr, Andreas J. Geissler and Rudi F. Vogel Abstract Background: Acetic acid bacteria (AAB) are well known producers of commercially used exopolysaccharides, such as cellulose and levan. Kozakia (K.) baliensis is a relatively new member of AAB, which produces ultra-high molecular weight levan from sucrose. Throughout cultivation of two K. baliensis strains (DSM 14400, NBRC 16680) on sucrose- deficient media, we found that both strains still produce high amounts of mucous, water-soluble substances from mannitol and glycerol as (main) carbon sources. This indicated that both Kozakia strains additionally produce new classes of so far not characterized EPS. Results: By whole genome sequencing of both strains, circularized genomes could be established and typical EPS forming clusters were identified. As expected, complete ORFs coding for levansucrases could be detected in both Kozakia strains. In K. baliensis DSM 14400 plasmid encoded cellulose synthase genes and fragments of truncated levansucrase operons could be assigned in contrast to K. baliensis NBRC 16680. Additionally, both K. baliensis strains harbor identical gum-like clusters, which are related to the well characterized gum cluster coding for xanthan synthe- sis in Xanthomanas campestris and show highest similarity with gum-like heteropolysaccharide (HePS) clusters from other acetic acid bacteria such as Gluconacetobacter diazotrophicus and Komagataeibacter xylinus. A mutant strain of K. baliensis NBRC 16680 lacking EPS production on sucrose-deficient media exhibited a transposon insertion in front of the gumD gene of its gum-like cluster in contrast to the wildtype strain, which indicated the essential role of gumD and of the associated gum genes for production of these new EPS. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Cultivation of Microorganisms from Basaltic Rock
Edwards, K.J., Bach, W., Klaus, A., and the Expedition 336 Scientists Proceedings of the Integrated Ocean Drilling Program, Volume 336 Data report: cultivation of microorganisms from basaltic rock and sediment cores from the North Pond on the western flank of the Mid-Atlantic Ridge, IODP Expedition 3361 Hisako Hirayama,2 Mariko Abe,2 Junichi Miyazaki,2 Sanae Sakai,2 Yuriko Nagano,3 and Ken Takai2 Chapter contents Abstract Abstract . 1 Cultivation experiments targeting chemolithoautotrophic micro- organisms were performed using subseafloor basaltic cores (the Introduction . 1 deepest sample is from 315 meters below seafloor [mbsf] and Materials and methods . 2 overlying sediment cores (the deepest sample is from 91.4 mbsf) Results . 4 from North Pond on the western flank of the Mid-Atlantic Ridge. Acknowledgments. 5 The cores were recovered by the R/V JOIDES Resolution during Inte- References . 5 grated Ocean Drilling Program Expedition 336. Different bacteria Figure. 8 were grown under different media and temperature conditions. In Tables. 9 the enrichment cultures of the basaltic cores under aerobic condi- tions, frequently detected bacteria at 8°C and 25°C were members of the genera Ralstonia (the class Betaproteobacteria) and Pseudo- monas (Gammaproteobacteria), whereas members of the genera Paenibacillus (Bacilli) and Acidovorax (Betaproteobacteria) were conspicuous at 37°C. Bacillus spp. (Bacilli) were outstanding at 37°C under anaerobic conditions. In the enriched cultures of the sediment cores, bacterial growth was observed at 15°C but not at 37°C, and the bacteria detected at 15°C mostly belonged to gam- maproteobacterial genera such as Pseudomonas, Halomonas, and Marinobacter. -
During Flowering Stage and Their Plant Growth Promoting Traits. D Sachdev, V Agarwal, P Verma, Y Shouche, P Dhakephalkar, B Chopade
The Internet Journal of Microbiology ISPUB.COM Volume 7 Number 2 Assessment of microbial biota associated with rhizosphere of wheat (Triticum aestivum) during flowering stage and their plant growth promoting traits. D Sachdev, V Agarwal, P Verma, Y Shouche, P Dhakephalkar, B Chopade Citation D Sachdev, V Agarwal, P Verma, Y Shouche, P Dhakephalkar, B Chopade. Assessment of microbial biota associated with rhizosphere of wheat (Triticum aestivum) during flowering stage and their plant growth promoting traits.. The Internet Journal of Microbiology. 2008 Volume 7 Number 2. Abstract Microbial biota associated with wheat rhizosphere during flowering-stage and their plant growth promoting traits was investigated. 16S rRNA gene sequencing was performed of the isolates, which were obtained on selective media. Isolates belonged to: alpha-proteobacteria, beta-proteobacteria, gamma-proteobacteria; Actinobacteria; Bacteroidetes and Firmicutes. Bacillus was the most dominant genus (34.7%) followed by Pseudomonas (14.4%). Among diazotrophs, Arthrobacter sp. (n=3), Cupriavidus sp. (n=3) and Stenotrophomonas sp. (n=4) occurred more frequently. Most of the isolates produced indole acetic acid. Ac. baumannii , Ps. lini, Ser. marcescens, C. respiraculi and Ag.tumfaciens solubilized phosphate. Two Acinetobacter strains, five Pseudomonas srains and four Bacillus strains produced siderophore. Strains of Ps. aeruginosa, Ps. lini and Ps. thivervalensis exhibited in vitro fungal growth inhibition. Arthrobacter globiformis Y2S3 exhibited indole acetic acid production, siderophore production and antifungal activity. Plant growth promoting traits of these rhizobacteria indicated beneficial relationship between rhizobacteria and wheat plants. Several of the strains could be further developed as an effective bio-inoculant. INTRODUCTION plant growth (Compant et al. 2005; Padalalu and Chopade Rhizosphere soil is a “hot-spot” for microbial growth and 2006).