MICROWAVE CAVITY METHOD for MEASURING PLASMA PROPERTIES APPROVED: J&Jor Professor Minor Professor

Total Page:16

File Type:pdf, Size:1020Kb

MICROWAVE CAVITY METHOD for MEASURING PLASMA PROPERTIES APPROVED: J&Jor Professor Minor Professor MICROWAVE CAVITY METHOD FOR MEASURING PLASMA PROPERTIES APPROVED: J&jor Professor Minor Professor (j Directoj^of the Dep^frtirient of Physics Dean of the Graduate School MICROWAVE CAVITY METHOD FOR MEASURING PLASMA PROPERTIES THESIS Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By Ronald H. Freeman, B.S, Denton, Texas August, 1969 TABLE OF CONTENTS LIST OF TABLES iv LIST OF ILLUSTRATIONS V Chapter I. INTRODUCTION 1 II. THEORY, DESIGN AND OPERATIONAL PROCEDURES. 16 III. ANALYSIS AND CONCLUSIONS 28 APPENDIX . 37 BIBLIOGRAPHY 59 in LIST OF TABLES Table Page I. Resonant Frequency shift versus Plasma Discharge Current Data for Argon at 200 Microns Pressure.... 55 II. Resonant Frequency shift versus Plasma Discharge Current Data for Argon at 277 Microns Pressure.... 55 III. Resonant Frequency shift versus Plasma Discharge Current Data for Argon at 267.5 Microns Pressure.. 56 IV. Resonant Frequency shift versus Plasma Discharge Current Data for Argon at 126.4 Microns Pressure.. 56 V. Resonant Frequency shift versus Plasma Discharge Current Data for Argon at 514 Microns Pressure.... 57 VI. Resonant Frequency shift versus Plasma Discharge Current Data for C>2 at 250 Microns Pressure 57 VII. Resonant Frequency shift versus Plasma Discharge Current Data for C>2 at 200 Microns Pressure 58 VIII. Resonant Frequency shift versus Plasma Discharge Current Data for at 95 Microns Pressure 5 8 IX. Resonant Frequency shift versus Plasma Discharge Current Data for 02 at 210 Microns Pressure 5 8 IV LIST OF ILLUSTRATIONS Figure Page 1. Hypersonic Flow Patterns or Reentry Flow-Field Plasmas • 3 8 2. Basic Electromagnetic Wave-Plasma Interaction. ... 39 3. Block Diagram of Experimental Equipment 40 4. Cylindrical Cavity 41 5. Mode Patterns for the TMn1f) Mode and Direction of the Electric Field 42 6. Resonance Line Shape 43 7. Standing-Wave Ratios, in the Feed Line for (A) an Empty and (B) a Plasma-Filled Resonant Cavity in the Vicinity of Resonance, Showing Detuning. .... 44 8. Block Diagram for Discharge Tube 45 9. Electron Discharge Tube 46 10. Resonant Frequency Shift vs Discharge Current for Argon at p=200 Microns 47 11. Resonant Frequency Shift vs Discharge Current for Argon at p=277 Microns 48 12. Resonant Frequency Shift vs Discharge Current for Argon at p=267 Microns 49 13. Resonant Frequency Shift vs Discharge Current for Argon at "p=126.4 Microns . 50 14. Resonant Frequency Shift vs Discharge Current for Argon at p=514 Microns 51 15. Resonant Frequency Shift vs Discharge Current for at p=250 Microns. 52 16. Resonant Frequency Shift vs Discharge Current for O2 at p=200 Microns 53 v Figure Page 17. Resonant Frequency Shift vs Discharge Current for C>2 at p=9 5 Microns 5 4 18. Resonant Frequency Shift vs Discharge Current for 02 at p=210 Microns , 54 VI CHAPTER I INTRODUCTION The plasma sheath which envelops a spacecraft during entry into an atmosphere disrupts electromagnetic prop- agation links to and from the spacecraft. The resultant entry communication problem has faced mission planners since velocities greater than Mach 10 were first achieved. Researchers in many cases have been able to design around this radio blackout problem but not without the loss of valuable research and operational data or the requirement of elaborate data storage and playback systems and recovery packages. This problem is of much greater concern for advanced missions involving manned maneuverable spacecraft reentries, and for scientific entry probes to other planets such as Mars or Ventis, both of which require real-time communication links. This discussion is concerned primarily with communica- tions blackout during spacecraft entry into a planetary atmosphere. The gas in the shock layer, between shock wave and vehicle surface, ionizes from the intense heating which takes place in the bow shock wave and a viscous region of high gas enthalpy. This ionization may persist throughout the subsequent flow over the vehicle and into the wake, thus completely engulfing the vehicle and its communica- tions elements. This layer contains a high concentration of free electrons. The schematic representation of continuous flow-field regions.near typical reentry bodies illustrates the fact that several distinctly different types of plasma may be present,as shown in Fig. 1. The outer region (between the shock wave and viscous layers) consists of inviscid air which is first compressed and heated by a strong bow shock wave. During this time many free electrons are produced. When this fluid expands around the vehicle, some of the electrons and ions recombine, but in general, this flow is not one of complete chemical equilibrium. (4,6) There is a viscous boundary-layer region close to the body surface where fluid is decelerated from the inviscid flow velocity to zero velocity at the surface. There may be additional electron production within the layer, or there may be primarily recombination, depending upon the aero- dynamics involved. Also, because of the ablation of surface material during reentry, this fluid may be a reacting mixture of air and ablation products. As in the case of the inviscid plasma, the boundary-layer plasma is generally not in equilibrium. The inner plasma region(between the free-shear layer and the rear-body surfaces) is one of viscous separated fluid^which is composed of boundary-layer air "contaminated" with ablation material from the heat shield. This separated mixture recirculates in the base-flow region and is finally scavenged into the wake. Because of the long dwell time of this fluid, the separated plasma is likely to approach equilibrium. The signal propagation* from an antenna on the body will be through both the inviscid plasma and one of the viscous plasma regions(depending on the reentry dynamics or programmed maneuvers by the onboard computer or the manual commands by the astronaut, the aspect angle, attitude, and roll orientation of the reentry vehicle) and will never be through a viscous region only, or the inviscid region only. Since the general problem involves propagation through all these plasmas, it is necessary to determine the electron concentration in each type of plasma. Before entering into this discussion of the electron concentration, it is advantageous to gain insight into the manner by which these free electrons can disrupt electro- magnetic propagation by reflection and attenuation of these electromagnetic waves. (3) First, assume that a plasma contains a like number of positively and negatively charged particles and can be considered macroscopically neutral. Most of the negative charges are free electrons and most of the ions are positive in a reentry plasma. On a microscopic scale, these charged particles maintain an average separation due to their electrostatic fields, which, for simplicity, can be considered as the equilibrium spacing. If for some reason one of the charges is perturbed out of equilibrium configuration and the other charges remain fixed, the dynamic picture would be an oscillation of the single charge about its equilibrium position, like that of a spring and mass oscillator. The particle represents the mass, the restoring electrostatic force due to neighboring charges represents the spring, and collision of the- charge with other particles in the plasma represents the damping force. The meaning of "plasma frequency" now becomes clear; it is the characteristic or natural oscillation frequency of a charge in the plasma. Electrons will oscillate at a value, given as follows:(1) 2 f = (—®—N£)^^ 8970 (Nq)^ (i) u me where me is the electron mass, e is the electron charge, Ne is the number of free electrons in a cubic centimeter, and f is the plasma frequency in cycles per second. Since P me and e are constants, the value of plasma frequency depends only on the electron concentration, which deter- mines the restoring force. The damping parameter for electron oscillation, called collision frequency, v, can be expressed by the following equation: (3) v - c £ n. Q • (2) e i. 11 • The mean thermal electron velocity cQ takes the following equation form: S = (SI)15 •. <3) . e urne The expression for collision frequency is evaluated by sxamming the product of concentration, ri^, and the velocity- averaged collision cross-section, Q^, for all species in the plasma that the electron can collide with. These include both neutral species and ions. Therefore, the dynamic picture describes the electron being perturbed out of position and then allowed to oscillate in accordance with forces from within the plasma. In the case of electromagnetic waves interacting, however, there is a continu- ous periodic driving force on the electron, due to the interaction between the electric field of. the wave and the electrostatic field of the electrons. This is illustrated in Fig. (2) to help visualize the problem. Part (a) denotes a driving frequency considerably less than the natural- frequency of the plasma electron,and for low collisional damping. In part (b) the electron thus appears to have little inertia and will closely follow the driving or signal frequency, f. Since the oscillating charge will radiate (due to charge acceleration) as a dipole radiator, a forward and a backward electromagnetic wave will occur (part c). The backward wave is seen as the reflected wave in free space, whereas the forward wave largely cancels the signal resulting in a greatly weakened or'attenuated wave in the propagation direction. This process is repeated is each unit thickness of plasma so that wave attenuation increases directly with the plasma thickness. The amount of reflection seen in free space increases with plasma thickness to a thickness comparable to wavelength of signal in the plasma. The amount of reflection for larger thickness does not increase because the backward wave in the plasma is attenuated.
Recommended publications
  • Design of Microwave Cavity Bandpass Filter from 25Ghz to 60Ghz
    Ashna Shaiba. Int. Journal of Engineering Research and Application www.ijera.com ISSN: 2248-9622, Vol. 7, Issue 9, (Part -6) September 2017, pp.64-69 RESEARCH ARTICLE OPEN ACCESS Design of Microwave Cavity Bandpass Filter from 25GHz TO 60GHz *Ashna Shaiba1, Dr. Agya Mishra2 1Department of Electronics & Telecommunication Engineering, Jabalpur Engineering College , Jabalpur Madhya Pradesh, Pin- 482011 India 2Department of Electronics & Telecommunication Engineering, Jabalpur Engineering College , Jabalpur Madhya Pradesh, Pin- 482011 India Corresponding Author: Ashna Shaiba1 ABSTRACT This paper presents the design of microwave cavity band pass filter and analyzes the quality factor and insertion loss upto 60GHz .This paper discusses the performance of a cavity filter for different size of cavity at different frequencies upto 60GHz with calculation of quality factor and insertion loss. This type of microwave cavity filter will be useful in any microwave system wherein low insertion loss and high frequency selectivity are crucial, such as in base station, radar and broadcasting system. It is shown that the basis for much fundamental microwave filter theory lies in the realm of cavity filters, which indeed are actually used directly for many applications at microwave frequencies as high as 60 GHz. Many types of algorithm are discussed and compared with the object of pointing out the most useful references, especially for a researcher to the field. Keywords: Microwave cavity filters, band pass filter(BPF), quality factor, s-parameter, insertion loss, TE101 mode. ----------------------------------------------------------------------------------------------------------------------------- --------- Date of Submission: 05-09-2017 Date of acceptance: 21-09-2017 ----------------------------------------------------------------------------------------------------------------------------- --------- I. INTRODUCTION II. CONCEPTS OF MICROWAVE A filter is an electronic device used to select CAVITY FILTER a particular pass band range.
    [Show full text]
  • High Performance, Continuously Tunable Microwave Filters Using MEMS Devices with Very Large, Controlled, Out-Of-Plane Actuation
    1 High Performance, Continuously Tunable Microwave Filters using MEMS Devices with Very Large, Controlled, Out-of-Plane Actuation Jackson Chang, Michael Holyoak, George Kannell, Marc Beacken, Matthias Imboden and David J. Bishop with a filter, quadrature detector and analog-to-digital Abstract— Software defined radios (SDR) in the microwave X converters to digitize the detector I/Q outputs for subsequent and K bands offer the promise of low cost, programmable digital processing. The filter is needed because of the challenge operation with real-time frequency agility. However, the real of detecting nanowatt signals in the presence of powerful out of world in which such radios operate requires them to be able to band transmissions and the finite dynamic range of the SDR. In detect nanowatt signals in the vicinity of 100 kW transmitters. this paper we discuss using novel MEMS devices in a This imposes the need for selective RF filters on the front end of the receiver to block the large, out of band RF signals so that the capacitance-post loaded cavity filter geometry [6]. We believe finite dynamic range of the SDR is not overwhelmed and the such filters can meet the considerable challenges of being low desired nanowatt signals can be detected and digitally processed. This is currently typically done with a number of narrow band filters that are switched in and out under program control. What is needed is a small, fast, wide tuning range, high Q, low loss filter that can continuously tune over large regions of the microwave spectrum. In this paper we show how extreme throw MEMS actuators can be used to build such filters operating up to 15 GHz and beyond.
    [Show full text]
  • Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper
    Journal of Visualized Experiments www.jove.com Video Article Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper Mary Kombolias1, Jan Obrzut2, Michael T. Postek3,4, Dianne L. Poster2, Yaw S. Obeng3 1 Testing and Technical Services, Plant Operations, United States Government Publishing Office 2 Materials Measurement Laboratory, National Institute of Standards and Technology 3 Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology 4 College of Pharmacy, University of South Florida Correspondence to: Mary Kombolias at [email protected], Yaw S. Obeng at [email protected] URL: https://www.jove.com/video/59991 DOI: doi:10.3791/59991 Keywords: Engineering, Issue 152, Resonant Cavity, dielectric spectroscopy, paper, fiber analysis, paper aging, recycled content Date Published: 10/4/2019 Citation: Kombolias, M., Obrzut, J., Postek, M.T., Poster, D.L., Obeng, Y.S. Method Development for Contactless Resonant Cavity Dielectric Spectroscopic Studies of Cellulosic Paper. J. Vis. Exp. (152), e59991, doi:10.3791/59991 (2019). Abstract The current analytical techniques for characterizing printing and graphic arts substrates are largely ex situ and destructive. This limits the amount of data that can be obtained from an individual sample and renders it difficult to produce statistically relevant data for unique and rare materials. Resonant cavity dielectric spectroscopy is a non-destructive, contactless technique which can simultaneously
    [Show full text]
  • A Dissertation Entitled Design of Microwave Front-End Narrowband
    A Dissertation entitled Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering _________________________________________ Vijay Devabhaktuni, Ph.D., Committee Chair _________________________________________ Mansoor Alam, Ph.D., Committee Member _________________________________________ Mohammad Almalkawi, Ph.D., Committee Member _________________________________________ Matthew Franchetti, Ph.D., Committee Member _________________________________________ Daniel Georgiev, Ph.D., Committee Member _________________________________________ Telesphor Kamgaing, Ph.D., Committee Member _________________________________________ Roger King, Ph.D., Committee Member _________________________________________ Patricia Komuniecki, Ph.D., Dean College of Graduate Studies The University of Toledo May 2013 Copyright 2013, Lee Waid Cross This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering The University of Toledo May 2013 This dissertation proposes three novel bandpass filter structures to protect systems exposed to damaging levels of electromagnetic (EM) radiation from intentional
    [Show full text]
  • Single Mode Circular Waveguide Applicator for Microwave Heating of Oblong Objects in Food Research
    ELECTRONICS AND ELECTRICAL ENGINEERING ISSN 1392 – 1215 2011. No. 8(114) ELEKTRONIKA IR ELEKTROTECHNIKA HIGH FREQUENCY TECHNOLOGY, MICROWAVES T 191 AUKŠTŲJŲ DAŽNIŲ TECHNOLOGIJA, MIKROBANGOS Single Mode Circular Waveguide Applicator for Microwave Heating of Oblong Objects in Food Research D. Kybartas, E. Ibenskis Department of Signal Processing, Kaunas University of Technology, Studentų str. 50, LT-51368, Kaunas, Lithuania, phone: +370 684 15999, e-mail: [email protected] R. Surna Department of Applied Electronics, Kaunas University of Technology, Studentų str. 50, LT-51368, Kaunas, Lithuania http://dx.doi.org/10.5755/j01.eee.114.8.701 Introduction pattern of standing waves with sharp peaks occurs in it. In order to obtain uniform heating, mode stirrers are Microwave heating is well known for more than sixty used or processed material has to be moved in the cavity years [1], [2]. Nowadays it is widely used in science and [2]. Multimode type of microwave heating is applicable technologies for fast increasing of temperature of various when large amounts of product should be processed objects and materials with significant dielectric dissipation uniformly. However, required microwave power in this factor. This method can be used for developing of new case can reach 10 kW [2]. materials, e.g. sintering of ceramics [3]. But the widest field Relatively small samples of food material are used of applications of microwave heating remains in food in development of new products. Therefore, uniform industry for thawing, cooking, drying sterilization and heating of large volume is not necessary but distribution pasteurization of various foods [4, 5]. A special application of electromagnetic field must correspond to the size or of microwave heating is very fast increase of temperature shape of samples.
    [Show full text]
  • Microwave Engineering Lecture Notes B.Tech (Iv Year – I Sem)
    MICROWAVE ENGINEERING LECTURE NOTES B.TECH (IV YEAR – I SEM) (2018-19) Prepared by: M SREEDHAR REDDY, Asst.Prof. ECE RENJU PANICKER, Asst.Prof. ECE Department of Electronics and Communication Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY IV Year B. Tech ECE – I Sem L T/P/D C 5 -/-/- 4 (R15A0421) MICROWAVE ENGINEERING OBJECTIVES 1. To analyze micro-wave circuits incorporating hollow, dielectric and planar waveguides, transmission lines, filters and other passive components, active devices. 2. To Use S-parameter terminology to describe circuits. 3. To explain how microwave devices and circuits are characterized in terms of their “S” Parameters. 4. To give students an understanding of microwave transmission lines. 5. To Use microwave components such as isolators, Couplers, Circulators, Tees, Gyrators etc.. 6. To give students an understanding of basic microwave devices (both amplifiers and oscillators). 7. To expose the students to the basic methods of microwave measurements. UNIT I: Waveguides & Resonators: Introduction, Microwave spectrum and bands, applications of Microwaves, Rectangular Waveguides-Solution of Wave Equation in Rectangular Coordinates, TE/TM mode analysis, Expressions
    [Show full text]
  • All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable
    Purdue University Purdue e-Pubs Birck and NCN Publications Birck Nanotechnology Center 6-2014 All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters Muhammad Shoaib Arif Birck Nanotechnology Center, Purdue University, [email protected] Dimitrios Peroulis Purdue University, Birck Nanotechnology Center, [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/nanopub Part of the Nanoscience and Nanotechnology Commons Arif, Muhammad Shoaib and Peroulis, Dimitrios, "All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters" (2014). Birck and NCN Publications. Paper 1638. http://dx.doi.org/10.1109/JMEMS.2013.2281119 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 23, NO. 3, JUNE 2014 727 All-Silicon Technology for High-Q Evanescent Mode Cavity Tunable Resonators and Filters Muhammad Shoaib Arif, Student Member, IEEE, and Dimitrios Peroulis, Member, IEEE Abstract— This paper presents a new fabrication technology relatively large size, difficulty in planar integration, high power and the associated design parameters for realizing compact consumption, need of controlled temperature environment and widely-tunable cavity filters with a high unloaded quality for proper operation, and high cost [4]. The planar or 2-D factor ( Qu) maintained throughout the analog tuning range. This all-silicon technology has been successfully employed to tunable filter technology is another extensively explored demonstrate tunable resonators in mobile form factors in the approach. In these filters, transmission lines are loaded with C, X, Ku, and K bands with simultaneous high unloaded lumped tunable elements (varactors) for frequency tuning.
    [Show full text]
  • Ncomms1723.Pdf
    ARTICLE Received 6 Sep 2011 | Accepted 2 Feb 2012 | Published 6 Mar 2012 DOI: 10.1038/ncomms1723 Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature T. Faust1, P. Krenn1, S. Manus1, J.P. Kotthaus1 & E.M. Weig1 Following recent insights into energy storage and loss mechanisms in nanoelectromechanical systems (NEMS), nanomechanical resonators with increasingly high quality factors are possible. Consequently, efficient, non-dissipative transduction schemes are required to avoid the dominating influence of coupling losses. Here we present an integrated NEMS transducer based on a microwave cavity dielectrically coupled to an array of doubly clamped pre-stressed silicon nitride beam resonators. This cavity-enhanced detection scheme allows resolving of the resonators’ Brownian motion at room temperature while preserving their high mechanical quality factor of 290,000 at 6.6 MHz. Furthermore, our approach constitutes an ‘opto’- mechanical system in which backaction effects of the microwave field are employed to alter the effective damping of the resonators. In particular, cavity-pumped self-oscillation yields a linewidth of only 5 Hz. Thereby, an adjustement-free, all-integrated and self-driven nanoelectromechanical resonator array interfaced by just two microwave connectors is realised, which is potentially useful for applications in sensing and signal processing. 1 Center for NanoScience (CeNS) and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, München 80539, Germany. Correspondence and requests for materials should be addressed to E.M.W. (email: [email protected]). NatURE COMMUNicatiONS | 3:728 | DOI: 10.1038/ncomms1723 | www.nature.com/naturecommunications © 2012 Macmillan Publishers Limited. All rights reserved. ARTICLE NatUre cOMMUNicatiONS | DOI: 10.1038/ncomms1723 he increasing importance of nanomechanical resonators for a b both fundamental experiments1–3 and sensing applications4,5 Tin recent years is a direct consequence of their high resonance z d frequencies as well as low masses.
    [Show full text]
  • High-Q Tunable Microwave Cavity Resonators and Filters Using SOI-Based RF MEMS Tuners Xiaoguang Liu, Student Member, IEEE, Linda P
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. XX, NO. XX, FEBRUARY 2010 1 High-Q Tunable Microwave Cavity Resonators and Filters using SOI-based RF MEMS Tuners Xiaoguang Liu, Student Member, IEEE, Linda P. B. Katehi, Fellow, IEEE, William J. Chappell, Member, IEEE and Dimitrios Peroulis, Member, IEEE Abstract—This paper presents the modeling, design, fabri- filters [6]; or b) high tuning range at the cost of low Q u (< 200 cation and measurement of MEMS-enabled continuously tun- @ 5 GHz), such as MEMS varactor tuned filters. able evanescent-mode electromagnetic cavity resonators and fil- ters with very high unloaded quality factors (Qu). Integrated Recently, however, there has been some success in realizing electrostatically-actuated thin diaphragms are used for the first widely tunable filters with simultaneous high-Qu and low time for tuning the frequency of the resonators/filters. An insertion loss using evanescent-mode cavity resonators with 2.6 1 5.0 − 1.9 example tunable resonator with : ( GHz) tuning MEMS tuners [1], [16]–[18]. In [16], Hou et al. presented ratio, Qu of 300 − 650 is presented. A continuously tunable 2- pole filter from 3.04 GHz to 4.71 GHz with 0.7% bandwidth and preliminary results on tunable micromachined evanescent- insertion loss of 3.55 − 2.38 dB is also shown as a technology mode resonator with Qu of 200 at 2.5 GHz and 120 at 4 demonstrator. Mechanical stability measurements show that the GHz. Joshi et al. demonstrated substrate integrated evanescent- tunable resonators/filters exhibit very low frequency drift (less mode tunable filters with high tuning range (2.3 − 4 GHz) than 0.5%for3 hours) under constant bias voltage.
    [Show full text]
  • Lecture 21 Cavity Resonators
    Lecture 21 Cavity Resonators Cavity resonators are important components of microwave and optical systems. They work by constructive and destructive interference of waves in an enclosed region. They can be used as filters, or as devices to enhance certain physical interactions. These can be radiation antennas or electromagnetic sources such as magnetrons or lasers. They can also be used to enhance the sensitivity of sensors. We will study a number of them, and some of them, only heuristically in this lecture. 21.1 Transmission Line Model of a Resonator The simplest cavity resonator is formed by using a transmission line. The source end can be terminated by ZS and the load end can be terminated by ZL. When ZS and ZL are non- dissipative, such as when they are reactive loads (capacitive or inductive), then no energy is dissipitated as a wave is reflected off them. Therefore, if the wave can bounce and interfere constructively between the two ends, a coherent solution or a resonant solution can exist due to constructive inference. The resonant solution exists even when the source is turned off. In mathematical par- lance, this is a homogeneous solution to a partial differential equation or ordinary differential equation, since the right-hand side of the pertinent equation is zero. The right-hand side of these equations usually corresponds to a source term or a driving term. In physics parlance, this is a natural solution since it exists naturally without the need for a driving or exciting source. 219 220 Electromagnetic Field Theory Figure 21.1: A simple resonator can be made by terminating a transmission line with two reactive loads at its two ends, the source end with ZS and the load end with ZL.
    [Show full text]
  • Phase and Frequency Locked Magnetron* M
    THPPC065 Proceedings of IPAC2012, New Orleans, Louisiana, USA PHASE AND FREQUENCY LOCKED MAGNETRON* M. Neubauer#, A. Dudas, R. Sah, Muons, Inc. Batavia, IL, USA A. Moretti, M. Popovic, Fermilab, Batavia, IL, USA Abstract Similarly, the axial field of the magnetron cannot be permitted to saturate the ferrite control rods, as then they Phase and frequency locked magnetrons have many are no longer controllable via magnetic control circuits. important uses from phased array ground penetrating Introduction of ferrite rods at the cavity walls also radars to SRF sources. We report on the recent progress in adversely affects the Q of the magnetron cavities. making such a magnetron. The ferrite/garnet material has Lastly, the goal of the design is to provide at least 10% passed bakeout and outgassing tests with outgassing rates frequency adjustability of the magnetron operating well below the requirements. The magnetic field frequency, and individual cavity control for phase requirements for adjusting the frequency by changing the stability via symmetry breaking. For phase stability the microwave properties of the ferrite/garnet have been theory is that symmetry breaking of the “free-wheeling” determined. The design of the anode structure with modes will produce more uniform interacting electric ferrites, magnetic shielding, and magnetic bias has been fields and therefore spoke uniformity in the time domain. completed for a low power test. We report on the design status. Muons, Inc. has negotiated a contract with a MAGNETIC DESIGN manufacturing firm, L-3 Electron Devices California To meet the requirements listed above it was necessary Tube Laboratory, Inc., to be the Manufacturing Partner to introduce magnetic shielding into the magnetron for the commercialization of this technology, and support environment.
    [Show full text]
  • Microwave Cavities Physics 401, Fall 2015 Eugene V
    Microwave cavities Physics 401, Fall 2015 Eugene V. Colla Agenda • Waves in waveguides • Standing waves and resonance • Setup • Experiment with microwave cavity • Comments on Bragg diffraction experiment 11/2/2015 2 Maxwell’s uniform plane wave traveling wave equation Equations in z-direction H ┴ E 22 Exx1 E D 0 2 2 2 X zvt B 0 general form of solution Ex B z zz Ez (,) z t f t g t E Hy vv t Y propagation speed D 1 H v Z t E vs H i() t kz H E E ZH Ex E0 e y x x y 11/2/2015 3 Ey=Ey(x) at Z Y i Y X Y Ey=Ey(z) at xi v b X Z Zi Xi a Z i() t kz Eyx E0 sin k x e 11/2/2015 4 + i() t kz Eyx E0 sin k x e = L L=n*l/2 i() t kz Eyx E0 sin k x e 11/2/2015 5 X X Ey=Ey(z) Y Y Z Z X Ey=Ey(x or z) Ey Z H-field 11/2/2015 6 2 2 2 22m n p mnp v0 a b c 2 v0 -phase velocity TE101 mode: m=1, n=0, p=1 22 2 2 2 11 101v 0 c ac b a 11/2/2015 7 cavity coaxial wave guide Y I coupling loop outer H conductor X Z inner conductor R R M C C line L0 L Z0 Impedance of L wave guide 11/2/2015 8 coaxial wave guide cavity L QL RZ 0 coupling loop Y outer conductor X L Q0 Z QL , inner conductor R 1 Z0 1 Z0 : coupling coefficient Maximum power transfer: Z 0 Z1R Impedance of 0 wave guide 1 QQ , L 2 0 quality factor without external load 9 11/2/2015 Resonance Cavity Gunn diode 11/2/2015 MW oscillator 10 A 11/2/2015 11 Tuner detector Open Slotted line end Use detector to find distance between minimums in the slotted line (wave guide) 11/2/2015 12 50 40 30 20 E (mV) 10 l/2 0 0 2 4 6 8 10 12 14 16 18 x (cm) Use detector to find distance between minimums in the slotted line (wave guide).
    [Show full text]