Detection of Carnosinase-1 in Urine of Healthy Individuals and Patients with Type 2 Diabetes:…

Total Page:16

File Type:pdf, Size:1020Kb

Detection of Carnosinase-1 in Urine of Healthy Individuals and Patients with Type 2 Diabetes:… Amino Acids https://doi.org/10.1007/s00726-018-2602-y ORIGINAL ARTICLE Detection of carnosinase‑1 in urine of healthy individuals and patients with type 2 diabetes: correlation with albuminuria and renal function Angelica Rodriguez‑Niño1 · Christina M. Gant2 · Jana D. Braun1 · Xia Li1 · Shiqi Zhang1 · Thomas Albrecht1 · Jiedong Qiu1 · Stephan J. L. Bakker3 · Gozewijn D. Laverman2 · Bernhard K. Krämer1 · Anna Herold1 · Sibylle J. Hauske1 · Benito A. Yard1 Received: 2 March 2018 / Accepted: 9 June 2018 © Springer-Verlag GmbH Austria, part of Springer Nature 2018 Abstract Low serum carnosinase (CN-1) concentrations are associated with low risk for development of diabetic nephropathy (DN) in patients with type 2 diabetes (T2D). Although CN-1 is expressed in the kidney, urinary CN-1 (CNU) excretion and its pathological relevance in patients with T2D have not been investigated to date. The present study therefore assessed the extent of CNU excretion in healthy subjects (n = 243) and in patients with T2D (n = 361) enrolled in the DIAbetes and LifEstyle Cohort Twente-1 (DIALECT-1) in relation to functional renal parameters. CNU was detected in a high propor- tion of healthy individuals, 180 (74%); median CNU excretion was 0.25 mg/24 h [(IQR 0–0.65 mg/24 h]. In patients with T2D the prevalence and extent of CNU increased in parallel with albuminuria (r = 0.59, p < 0.0001; median CNU 0.1 vs 0.2 vs 1.5 mg/24 h, p < 0.0001; prevalence of CNU 61 vs. 81 vs. 97% p < 0.05 in normo- (n = 241), micro- (n = 80) and macroalbuminuria (n = 40), respectively). Patients with estimated glomerular fltration rate (eGFR) < 30 ml/min/1.73 m2 displayed higher median CNU excretion rates in comparison to patients with preserved eGFR (> 90 ml/min/1.73 m2) (1.36 vs 0.13 mg/24 h, p < 0.05). Backward stepwise multivariate linear regression analysis revealed albuminuria, eGFR and gly- cosuria to be independent factors of CNU excretion rates, all together explaining 37% of variation of CNU excretion rates (R2 = 0.37, p < 0.0001). These results show for the frst time that CN-1 can be detected in urine and warrants prospective studies to assess the relevance of CNU for renal function deterioration in diabetes patients. Keywords Carnosinase-1 · Urine · Diabetic nephropathy · Albuminuria Abbreviations CN-1 Carnosinase-1 DN Diabetic nephropathy eGFR Estimated glomerular fltration rate CNU Urinary carnosinase-1 HbA1c Hemoglobin A1c ESRD End-stage renal disease ACEi/ARB Angiotensin converting enzyme inhibitor/ angiotensin receptor blocker Handling Editor: S. Baba. Introduction Angelica Rodriguez-Niño and Christina M. Gant are equally contributing authors. Diabetic nephropathy (DN) is the leading cause of end-stage * Angelica Rodriguez‑Niño renal disease (ESRD) worldwide and imparts an increased angelica.rodriguez@medma‑uni‑heidelberg.de risk for cardiovascular disease and death in patients with 1 Vth Department of Medicine (Nephrology/Endocrinology/ type 1 and type 2 diabetes (Cusick et al. 2005). Rheumatology), University Medical Center Mannheim, Diabetic nephropathy develops insidiously, starting University of Heidelberg, Heidelberg, Germany with microalbuminuria as an early sign of impaired glo- 2 Department of Internal Medicine and Nephrology, ZGT merular fltration. Accompanied by a gradual decline in Hospital, Almelo, Hengelo, The Netherlands renal function, patients may progress to macroalbuminu- 3 Department of Nephrology, University Medical Center ria, overt proteinuria and ultimately end-stage renal disease Groningen, University of Groningen, Groningen, (ESRD) (Ismail et al. 1999; Campbell et al. 2003). Genetic The Netherlands Vol.:(0123456789)1 3 A. Rodriguez-Niño et al. susceptibility to DN has been suggested in numerous studies investigated possible correlations between urinary CN-1 and (Palmer and Freedman 2012). Amongst these, a trinucleotide renal parameters including albuminuria and renal function. repeat (CTG)n polymorphism in the signal sequence of the CNDP1 gene encoding for the protein carnosinase-1 (CN-1) showed a strong association with DN in patients with T2D Results (Janssen et al. 2005; Freedman et al. 2007; Mooyaart et al. 2009; Ahluwalia et al. 2011; Yadav et al. 2016). The (CTG)n CN‑1 is detectable in urine (CNU) polymorphism is functional since it infuences the efcacy of CN-1 secretion from the hepatic cells into the circulation. We have recently reported the detection of CN-1 in serum or The short allelic variant, i.e., (CTG)5, also referred to as the plasma using an in-house developed ELISA system (Adel- Mannheim allele, was found to be more common in T2D mann et al. 2012). To assess if this ELISA is also suitable patients without nephropathy and is associated with lower for detection of CN-1 in urine, a known concentration of serum CN-1 concentrations and enzymatic activities (Jans- recombinant CN-1 (rCN-1) was spiked into spot urine sam- sen et al. 2005; Riedl et al. 2007). Apart from the (CTG)n ples of healthy individuals or into standard phosphate-buf- genotype, hyperglycemia also enhances CN-1 secretion and ered saline (PBS). By comparing the detected and expected enzymatic activity in vitro and in vivo (Riedl et al. 2010; rCN-1 concentration at diferent dilutions, a spike recovery Peters et al. 2012). of nearly 100% was detected for both matrices. Linearity in CN-1 is the rate limiting enzyme for hydrolysis of the his- the dilution curves was observed in a concentration range tidine-containing dipeptide: carnosine (β-alanyl-L-histidine), between 100 and 1000 ng/ml and was similar for urine and anserine (β-alanyl-N-methyl-histidine) and homocarnosine PBS (Fig. 1a). Since CN-1 in rodents is not a secreted pro- (N-(4-amino-butyryl)-L-histidine). In keeping with a pleth- tein, we further validated the specifcity of the CN-1 ELISA ora of benefcial properties reported for carnosine, e.g., by testing serum and urine of human CNDP1-overexpressing ROS scavenging (Nagasawa et al. 2001; Aydın et al. 2010), transgenic BTBR and wild-type mice. inhibition of AGEs formation (Alhamdani et al. 2007) and While CN-1 was clearly detected in serum and urine of anti-glycemic properties (Sauerhöfer et al. 2007; Albrecht CNDP1 transgenic mice, the CN-1 ELISA was completely et al. 2017), carnosine has widely gained scientifc interest negative on serum and urine of wild-type mice (Fig. 1b). as potential food supplement in T2D patients. Based on the The presence of CN-1 in urine of CNDP1 transgenic mice genetic association between the CNDP1 gene and DN and was further confrmed by Western blotting (Fig. 1c). the benefcial efects of carnosine, the hypothesis has been put forward that low CN-1 concentrations/enzymatic activity CNU in healthy subjects may result in higher renal carnosine concentrations aford- ing protection against hyperglycemia-mediated renal damage Although spiking of rCN-1 in PBS or urine gave similar (Boldyrev et al. 2013). results, we observed in some individuals that the measured Although in humans, CN-1 is predominantly produced CN-1 concentrations were signifcantly higher than expected in the liver from where it is secreted into the circulation, at high rCN-1 dilutions when using urine as diluent. Indeed a number of studies have suggested that CN-1 is also the blanks, i.e., urine without spiked CN-1, showed traces expressed in the kidney, albeit to a much lower extent (Jans- of CN-1 in the samples of these individuals. To substanti- sen et al. 2005; Mooyaart et al. 2009; Peters et al. 2015). In ate these fndings we collected 24-h urine of living kidney the kidney, CN-1 expression was mostly found in distal tubu- donors and assessed if, and to what extent, CN-1 is pre- lar cells and podocytes of healthy individuals, but seemed sent in urine of healthy individuals. In 180 (74%) out of to be reallocated to proximal tubuli in diabetic patients with 243 subjects CN-1 was detected in urine. The median CNU DN (Peters et al. 2015). excretion rate was 0.25 mg/24 h (IQR 0–0.65 mg/24 h). No Based on the current knowledge that CN-1 is expressed diferences were detected between females and males. CN-1 in renal tissue and contains a signal peptide, it is conceiv- enzymatic activity was not detected in any of the urine sam- able that CN-1 can be secreted into the tubular lumen and ples (data not shown). consequently be detected in urine. To test this, we validated our ELISA assay for the detection of CN-1 in urine and CNU in patients with T2D subsequently measured CN-1 in 24-h urine collected from healthy subjects (living kidney donors evaluated prior to CNU was studied in a total of 361 type 2 diabetes patients donation) (n = 243) and patients with T2D enrolled in the (T2D) stratifed for 24-h albumin excretion into normoalbu- DIAbetes and LifEstyle Cohort Twente-1 (DIALECT-1) minuria (n = 241), microalbuminuria (n = 80) or macroalbu- (Gant et al. 2017) (n = 361). In the latter group, we also minuria (n = 40). 1 3 Detection of carnosinase-1 in urine of healthy individuals and patients with type 2 diabetes:… Fig. 1 a rCN-1 was spiked in human urine or PBS. CN-1 was in urine of mice overexpressing human CN-1 (CN1+) (n = 9). Note detected by ELISA in serial dilutions using urine or PBS as dilu- that no human CN-1 was detected in serum or urine of wild-type ent. Detected CN-1 concentrations of rCN-1 spiked in urine were mice (CN1−) (n = 9). c ELISA and Western blotting of CN-1 in urine compared with the expected concentrations to estimate spike recov- obtained from three diferent transgenic mice overexpressing human ery %.
Recommended publications
  • Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
    International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1.
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO A Lipidomic Perspective on Inflammatory Macrophage Eicosanoid Signaling A Thesis submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Paul Christopher Norris Committee in charge: Professor Edward A. Dennis, Chair Professor Pieter C. Dorrestein Professor Partho Ghosh Professor Christopher K. Glass Professor Michael J. Sailor 2013 The Dissertation of Paul Christopher Norris is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION To my parents, Darrell and Kathy, for always allowing me to think (and choose) for myself. iv TABLE OF CONTENTS Signature page ............................................................................................................................ iii Dedication .................................................................................................................................. iv Table of contents ......................................................................................................................... v List of symbols and abbreviations ........................................................................................... viii List of figures ............................................................................................................................. xi List of tables ............................................................................................................................
    [Show full text]
  • Biochemical Profiling of Renal Diseases
    INTRODUCTION TO LABORATORY PROFILING Alan H. Rebar, DVM, Ph.D., Diplomate ACVP Purdue University, Discovery Park 610 Purdue Mall, West Lafayette, IN 47907-2040 Biochemical profiling may be defined as the use of multiple blood chemistry determinations to assess the health status of various organ systems simultaneously. Biochemical profiling rapidly has become a major diagnostic aid for the practicing veterinarian for several reasons. First, a more educated clientele has come to expect increased diagnostic sophistication. Secondly, the advent of high-volume clinical pathology laboratories has resulted in low prices that make profiling in veterinary practice feasible and convenient. In addition, improved technology has resulted in the development of procedures that can be used to obtain accurate analyses on microsamples of serum. Such procedures offer obvious advantages to veterinarians, who in the past were hindered by requirements for large sample size. Although biochemical profiling offers exciting potential, it is not a panacea. Since standard chemical screens provide 12 to 30 test results, interpretation of data may be extremely complex. Interpretation is often clouded by the fact that perfectly normal animals may have, indeed, are expected to have, an occasional abnormal test result. It is estimated that in a panel of 12 chemistry tests, approximately 46% of all normal subjects will have at least one abnormal test result. Such abnormalities do not reflect inaccuracies in laboratory test procedures but rather the way in which reference (or normal) values are determined. In order to establish the "normal range" for a given test, the procedure is performed on samples from a large population of clinically normal individuals.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • Guidelines for Approach to a Child with Metabolic Acidosis (Including RTA)
    Guidelines for approach to a child with Metabolic acidosis (including RTA) Children’s Kidney Centre University Hospital of Wales Cardiff CF14 4XW DISCLAIMER: These guidelines were produced in good faith by the authors reviewing available evidence/opinion. They were designed for use by paediatric nephrologists at the University Hospital of Wales, Cardiff for children under their care. They are neither policies nor protocols but are intended to serve only as guidelines. They are not intended to replace clinical judgment or dictate care of individual patients. Responsibility and decision-making (including checking drug doses) for a specific patient lie with the physician and staff caring for that particular patient. Version 1, S. Hegde/Sept 2007 Metabolic acidosis ormal acid base balance Maintaining normal PH is essential for cellular enzymatic and other metabolic functions and normal growth and development. Although it is the intracellular PH that matter for cell function, we measure extra cellular PH as 1. It is easier to measure 2. It parallels changes in intracellular PH 3. Subject to more variation because of lesser number of buffers extra cellularly. Normal PH is maintained by intra and extra cellular buffers, lungs and kidneys. Buffers attenuate changes in PH when acid or alkali is added to the body and they act by either accepting or donating Hydrogen ions. Buffers function as base when acid is added or as acid when base is added to body. Main buffers include either bicarbonate or non-bicarbonate (proteins, phosphates and bone). Source of acid load: 1. CO2- Weak acid produced from normal metabolism, dealt with by lungs pretty rapidly(within hours) 2.
    [Show full text]
  • Tests for Abnormal Constituents in Urine
    By Sandipkumar Kanazariya Tuesday, December 11, 2018 1 Under pathological conditions urine excreted by patient shows the presence of abnormal constituents along with normal constituents. Abnormal constituents of urine are sugar, proteins, blood, bile salts, bile pigments and ketone bodies. Tuesday, December 11, 2018 2 A. Physical Characteristics 1. Volume : a. Polyuria: Volume more than 3000 ml / 24 hours It is observed in Diabetes mellitus, Diabetes insipidus, Addison’s disease, Chronic progressive renal failure, excess water intake, intake of diuretics like caffeine, alcohol etc. b. Oliguria: Volume less than 400 ml / 24 hours. It is observed in fluid deprivation, excess fluid loss as in hemorrhage and neurogenic shock, dehydration, acute glomerulonephritis, obstruction in the urinary tract, disease of heart and lungs & strenuous muscular exercise. Tuesday, December 11, 2018 3 c. Anuria: Less than 150ml / 24hrs Complete absence of urine output. It is observed in shock and renal failure. Tuesday, December 11, 2018 4 2. Colour:- The colour of urine is variable in following disease conditions as given following table Sr. No Colour possible causes/ disorder 1 Colour less Fatty disease, diabetes mellitus, Polyuria 2 Yellowish brown Bile pigment, fever 3 Reddish brown Hemoglobin in urine, hemorrhage, menstrual contamination 4 Milky Presence of Fat 5 Dark Yellow Fever 6 Dark green typhoid and cholera 7 Black Due to Melanin (Melanoma) or Homogentisic acid in Tuesday, December 11, 2018 Alkaptonuria 5 3. Odour:- Normal urine has faint aromatic odour. On standing it has ammoniacal odour due to bacterial contamination. Odour of urine is variable in certain diseased condition. Sr. No Odour diseases 1 Fruity odour ketosis 2 Cabbage type odour methionine Malabsorption 3 Maple sugar odour maple sugar urine disease(MSUD) 4 Mousy phenylketonuria 5 Rancid odour tyrosine 6 Foul Urinary Tract Infection, Tuesday, December 11, 2018 Vaginitis 6 Tuesday, December 11, 2018 7 4.
    [Show full text]
  • Obesity, Albuminuria, and Urinalysis Findings in US Young Adults from the Add Health Wave III Study
    CJASN ePress. Published on October 17, 2007 as doi: 10.2215/CJN.00540107 Obesity, Albuminuria, and Urinalysis Findings in US Young Adults from the Add Health Wave III Study Maria Ferris,* Susan L. Hogan,* Hyunsook Chin,* David A. Shoham,† Debbie S. Gipson,* Keisha Gibson,* Sema Yilmaz,‡ Ronald J. Falk,* and J. Charles Jennette§ *University of North Carolina Kidney Center and Division of Nephrology and Hypertension and §Department of Pathology and Laboratory Animal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; †Department of Preventive Medicine and Epidemiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois; and ‡Department of Pediatrics, Hospital of Dumlupinar University, Kutahya, Turkey Background and objectives: Obesity has been associated with kidney disease in adults. This study was designed to evaluate the association of obesity with an early marker of kidney disease, albuminuria, among young adults. and body mass ,(4463 ؍ albumin-to-creatinine ratio (n ,(9371 ؍ Design, setting, participants, & measurements: Urinalysis (n index (kg/m2) were measured in the Add Health Wave III cohort (2001 to 2002), a multiethnic sample of young adults followed for approximately 6 yr. Multivariate logistic regression modeled the association of sex-specific albuminuria with body mass index, adjusted for sample weights, sex, race, ethnicity, and glycosuria. Results: Urinalysis revealed that 0.8% had proteinuria, 4.6% had hematuria, 0.2% had combined hematuria and proteinuria, and 1.5% had glycosuria. Albuminuria prevalence was 4.4%. Mean body mass index was higher among those with albuminuria compared with those without. There were no associations between body mass index categories of 25 to <30 or 30 to <35 kg/m2 with albuminuria compared with the lowest body mass index (<25 kg/m2); however, the highest category (>35 kg/m2) was %95 ;4.0 ؍ CI: 1.02 to 3.04).
    [Show full text]
  • The Investigation of Symptomless Glycosuria with the Galactose and Cortisone Modified Glucose Tolerance Tests by R
    J Clin Pathol: first published as 10.1136/jcp.11.5.428 on 1 September 1958. Downloaded from J. clin. Path. (1958), 11, 428. THE INVESTIGATION OF SYMPTOMLESS GLYCOSURIA WITH THE GALACTOSE AND CORTISONE MODIFIED GLUCOSE TOLERANCE TESTS BY R. B. GOUDIE, W. P. STAMM, AND S. DISCHE From the Royal Air Force Institute of Pathology and Tropical Medicine (RECEIVED FOR PUBLICATION OCTOBER 21, 1957) Glycosuria is sought in routine clinical exami- Joslin and Lawrence are two leading authorities nations in order to detect patients with early or who are representative of the two main schools of mild diabetes mellitus. There is good evidence thought. Joslin, Root, White, and Marble (1952) that early treatment may avert deterioration and gave the following criteria for the diagnosis of lead to a lower and later incidence of the vascular, diabetes mellitus with the 100 g. glucose tolerance renal, and ophthalmic complications (Dunlop, test (" true glucose " technique, capillary blood): 1954; Ricketts, 1947). a fasting blood glucose over 100 mg./100 ml., Certain occupations are unsuitable for the dia- or a peak glucose value over 170 mg./100 ml. He betic, and early diagnosis is of particular im- considered that the two-hour level was " of greatcopyright. portance in the Royal Air Force because a value " but that " one cannot disregard the height diagnosis of diabetes is a ban on aircrew duties. to which the curve goes. In borderline cases it is Since other conditions may give rise to glycos- well to be conservative and to repeat the test on uria, its discovery must be followed by a careful a later occasion." investigation in every case to determine the cause.
    [Show full text]
  • Novel Proteins Regulated by Mtor in Subependymal Giant Cell Astrocytomas of Patients with Tuberous Sclerosis Complex and New Therapeutic Implications
    The American Journal of Pathology, Vol. 176, No. 4, April 2010 Copyright © American Society for Investigative Pathology DOI: 10.2353/ajpath.2010.090950 Molecular Pathogenesis of Genetic and Inherited Diseases Novel Proteins Regulated by mTOR in Subependymal Giant Cell Astrocytomas of Patients with Tuberous Sclerosis Complex and New Therapeutic Implications Magdalena Ewa Tyburczy,* Katarzyna Kotulska,† and demonstrated an effective modulation of SEGA Piotr Pokarowski,‡ Jakub Mieczkowski,* growth by pharmacological inhibition of both Joanna Kucharska,* Wieslawa Grajkowska,† mTOR and extracellular signal-regulated kinase sig- Maciej Roszkowski,§ Sergiusz Jozwiak,† naling pathways, which could represent a novel ther- and Bozena Kaminska* apeutic approach. (Am J Pathol 2010, 176:1878–1890; DOI: 10.2353/ajpath.2010.090950) From the Laboratory of Transcription Regulation,* the Nencki Institute of Experimental Biology, Warsaw; the Departments of Neurology and Epileptology,† and Neurosurgery,§ the Children’s Subependymal giant cell astrocytomas (SEGAs) are rare, Memorial Health Institute, Warsaw; and the Faculty of low-grade brain tumors (World Health Organization Grade I) Mathematics, Informatics, and Mechanics,‡ University of of a mixed glioneuronal lineage.1,2 They are observed in Warsaw, Poland 10% to 20% of patients with tuberous sclerosis complex (TSC) and are the major cause of morbidity in children and young adults with TSC.3 The disease affects about one in Subependymal giant cell astrocytomas (SEGAs) are 6000 people, is characterized by the formation of benign rare brain tumors associated with tuberous sclerosis tumors in multiple organs (mainly brain, heart, kidneys, skin, complex (TSC), a disease caused by mutations in TSC1 or lungs), and is often associated with epilepsy, mental or TSC2, resulting in enhancement of mammalian retardation, and autism.4,5 Tuberous sclerosis complex is target of rapamycin (mTOR) activity, dysregulation of caused by mutation in one of two tumor suppressor genes, cell growth, and tumorigenesis.
    [Show full text]
  • Recombinant Human Dipeptidase 1 Protein
    Leader in Biomolecular Solutions for Life Science Recombinant Human Dipeptidase 1 Protein Catalog No.: RP01097 Recombinant Sequence Information Background Species Gene ID Swiss Prot This protein is a kidney membrane enzyme involved in the metabolism of Human 1800 P16444 glutathione and other similar proteins by dipeptide hydrolysis. The encoded protein is known to regulate leukotriene activity by catalyzing the conversion of Tags leukotriene D4 to leukotriene E4. This protein uses zinc as a cofactor and acts as a C-6×His disulfide-linked homodimer. Two transcript variants encoding the same protein have been found for this gene. Synonyms Dipeptidase 1; Dehydropeptidase-I; Microsomal Dipeptidase; Renal Basic Information Dipeptidase; hRDP; DPEP1; MDP; RDP Description Recombinant Human Dipeptidase 1 Protein is produced by Mammalian expression Product Information system. The target protein is expressed with sequence (Asp17-Ser385) of human Dipeptidase 1 (Accession #P16444) fused with a 6×His tag at the C-terminus. Source Purification Mammalian > 95% by SDS- Bio-Activity PAGE. Storage Endotoxin Store the lyophilized protein at -20°C to -80 °C for long term. < 1.0 EU/μg of the protein by LAL After reconstitution, the protein solution is stable at -20 °C for 3 months, at 2-8 °C method. for up to 1 week. Avoid repeated freeze/thaw cycles. Formulation Lyophilized from a 0.22 μm filtered solution of 20mM PB, 150mM NaCl, pH7.4.Contact us for customized product form or formulation. Reconstitution Reconstitute to a concentration of 0.1-0.5 mg/mL in sterile distilled water. Contact www.abclonal.com Validation Data Recombinant Human Dipeptidase 1 Protein was determined by SDS-PAGE with Coomassie Blue, showing a band at 41 kDa.
    [Show full text]
  • Phyre 2 Results for P15288
    Email [email protected] Description P15288 Thu Jan 5 11:34:45 GMT Date 2012 Unique Job d2087d8d303c52c9 ID Detailed template information # Template Alignment Coverage 3D Model Confidence % i.d. Template Information PDB header:hydrolase Chain: B: PDB Molecule:aminoacyl-histidine dipeptidase; 1 c3mruB_ 100.0 64 Alignment PDBTitle: crystal structure of aminoacylhistidine dipeptidase from vibrio2 alginolyticus PDB header:hydrolase Chain: B: PDB Molecule:xaa-his dipeptidase; 2 c2qyvB_ Alignment 100.0 55 PDBTitle: crystal structure of putative xaa-his dipeptidase (yp_718209.1) from2 haemophilus somnus 129pt at 2.11 a resolution PDB header:hydrolase Chain: A: PDB Molecule:cytosolic non-specific dipeptidase; 3 c2zogA_ 100.0 17 Alignment PDBTitle: crystal structure of mouse carnosinase cn2 complexed with zn and2 bestatin PDB header:hydrolase Chain: B: PDB Molecule:peptidase, m20/m25/m40 family; 4 c2pokB_ 100.0 16 Alignment PDBTitle: crystal structure of a m20 family metallo peptidase from streptococcus2 pneumoniae PDB header:hydrolase Chain: A: PDB Molecule:succinyl-diaminopimelate desuccinylase; 5 c3pfeA_ Alignment 100.0 13 PDBTitle: crystal structure of a m20a metallo peptidase (dape, lpg0809) from2 legionella pneumophila subsp. pneumophila str. philadelphia 1 at 1.503 a resolution PDB header:hydrolase Chain: B: PDB Molecule:putative acetylornithine deacetylase; 6 c3pfoB_ Alignment 100.0 16 PDBTitle: crystal structure of a putative acetylornithine deacetylase (rpa2325)2 from rhodopseudomonas palustris cga009 at 1.90 a resolution PDB
    [Show full text]
  • Hyperglycaemia, Glycosuria and Ketonuria May Not Be Diabetes J Gray, a Bhatti, J M O'donohoe
    The Ulster Medical Journal, Volume 72, No. 1, pp. 48-49, May 2003. Case Report Hyperglycaemia, glycosuria and ketonuria may not be diabetes J Gray, A Bhatti, J M O'Donohoe Accepted 20 November 2002 Diabetic ketoacidosis is a well recognised, tenderness, maximal in the lower abdomen now important, but rare differential diagnosis ofacute with associated guarding and rebound. abdominal pain in children. We report a case A presumptive diagnosis of acute appendicitis highlighting the need for complete assessment of was made and an exploratory laparotomy any child presenting with new-onset glycosuria, undertaken through a lower mid line incision. A ketonuria and hyperglycaemia. Causes other than perforated appendix was found along with pus in diabetes may rarely produce these findings. the peritoneal cavity. Appendicectomy and CASE REPORT A girl aged three years and ten peritoneal lavage were performed. months with a six-hour history ofabdominal pain Postoperative recovery was uneventful, and she and vomiting was referred to the surgical team by was discharged home on the third postoperative a general practitioner. Past medical history day. Subsequent random blood glucose was included a diagnosis of non-specific abdominal normal at 4.6mmol/L. Her HbAlc was normal pain at three years old. There was no significant while islet cell antibodies were negative. At review family history nor recent illness in the family she was well, with no complaints orcomplications. circle. DISCUSSION On examination she was restless and thirsty, but apyrexic. There was no foetor or rash. She had Rarely diabetic ketoacidosis may present with grunting respiration with tachypnoea, but the acute abdominal pain.' As this is an important lungs were clear on auscultation.
    [Show full text]