atmosphere Article Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean Zhenhua Di 1,2,* , Wei Gong 1 , Yanjun Gan 3 , Chenwei Shen 1 and Qingyun Duan 1 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
[email protected] (W.G.);
[email protected] (C.S.);
[email protected] (Q.D.) 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 3 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
[email protected] * Correspondence:
[email protected]; Tel.: +86-10-5880-0217 Received: 21 March 2019; Accepted: 23 April 2019; Published: 1 May 2019 Abstract: Quantifying a set of suitable physics parameterization schemes for the Weather Research and Forecasting (WRF) model is essential for obtaining highly accurate typhoon forecasts. In this study, a systematic Tukey-based combinatorial optimization method was proposed to determine the optimal physics schemes of the WRF model for 15 typhoon simulations over the Northwest Pacific Ocean, covering all available schemes of microphysics (MP), cumulus (CU), and planetary boundary layer (PBL) physical processes. Results showed that 284 scheme combination searches were sufficient to find the optimal scheme combinations for simulations of track (km), central sea level pressure 1 (CSLP, hPa), and 10 m maximum surface wind (10-m wind, m s− ), compared with the 700 sets of full combinations (i.e., 10 MP 7 CU 10 PBL).