The Development of COMCOT Storm Surge Model and the Applica on to 2013 Typhoon

Total Page:16

File Type:pdf, Size:1020Kb

The Development of COMCOT Storm Surge Model and the Applica on to 2013 Typhoon The Development of COMCOT Storm Surge Model and the Applicaon to 2013 Typhoon Haiyan 2014/03/25 (二 ) Prof. Tso-Ren Wu (吳祚任) 蔡育霖、莊美惠、林君蔚 [email protected] Naonal Central University (Taiwan) 國立中央大學(台灣) Introduc:on of COMCOT (Cornell Mul:-grid Coupled Tsunami Model) • Solve shallow water equaons on both spherical and Cartesian coordinate systems • Explicit leapfrog Finite Difference Method for stable and high speed calculaon system • Mul:/Nested-grid system for mul:ple wave scales • Moving Boundary Scheme for inundaon (2). COMCOT has been used on many scien:fic papers At least 26 SCI papers were published during 2001~2011 (Including Science) 1. Title: Long waves through emergent coastal vegetaon 7. Title: An insitu borescopic quan:tave imaging profiler for the 12. Title: Analy:cal and numerical simulaon of tsunami Author(s): Mei Chiang C.; Chan I-Chi; Liu Philip L. -F.; et al. measurement of high concentraon sediment velocity mi:gaon by mangroves in Penang, Malaysia Source: JOURNAL OF FLUID MECHANICS Volume: 687 Pages: Author(s): Cowen Edwin A.; Dudley Russell D.; Liao Qian; et al. Author(s): Teh Su Yean; Koh Hock Lye; Liu Philip Li-Fan; et al. 461-491 DOI: 10.1017/jfm.2011.373 Published: NOV 2011 Source: EXPERIMENTS IN FLUIDS Volume: 49 Issue: 1 Special Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: SI Pages: 77-88 DOI: 10.1007/s00348-009-0801-8 Issue: 1 Pages: 38-46 DOI: 10.1016/j.jseaes.2008.09.007 2. Title: Insights on the 2009 South Pacific tsunami in Samoa Published: JUL 2010 Published: SEP 4 2009 and Tonga from field surveys and numerical simulaons Author(s): Fritz Hermann M.; Borrero Jose C.; Synolakis 8. Title: Tsunami hazard from the subducon megathrust of the 13. Title: Simulaon of Andaman 2004 tsunami for assessing Costas E.; et al. South China Sea: Part I. Source characterizaon and the resul:ng impact on Malaysia Source: EARTH-SCIENCE REVIEWS Volume: 107 Issue: 1-2 tsunami Author(s): Koh Hock Lye; Teh Su Yean; Liu Philip Li-Fan; et al. Special Issue: SI Pages: 66-75 DOI: 10.1016/j.earscirev. Author(s): Megawa Kusnowidjaja; Shaw Felicia; Sieh Kerry; et al. Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 2011.03.004 Published: JUL 2011 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 Issue: 1 Pages: 74-83 DOI: 10.1016/j.jseaes.2008.09.008 Pages: 13-20 DOI: 10.1016/j.jseaes.2008.11.012 Published: SEP 4 Published: SEP 4 2009 3. Title: Solid landslide generated waves 2009 Author(s): Wang Yang; Liu Philip L. -F.; Mei Chiang C. 14. Title: SPECIAL ISSUE Tsunamis in Asia Preface Source: JOURNAL OF FLUID MECHANICS Volume: 675 Pages: 9. Title: Simulaon of Andaman 2004 tsunami for assessing impact Author(s): Liu Philip L. -F.; Huang Bor-Shouh 529-539 DOI: 10.1017/S0022112011000681 Published: on Malaysia Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 MAY 2011 Author(s): Koh Hock Lye; Teh Su Yean; Liu Philip Li-Fan; et al. Issue: 1 Pages: 1-1 DOI: 10.1016/j.jseaes.2009.05.001 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 Published: SEP 4 2009 4. Title: An explicit finite difference model for simulang Pages: 74-83 DOI: 10.1016/j.jseaes.2008.09.008 Published: SEP 4 weakly nonlinear and weakly dispersive waves over slowly 2009 15. Title: INDIAN OCEAN TSUNAMI ON 26 DECEMBER 2004: varying water depth Times Cited: 0 (from Web of Science) NUMERICAL MODELING OF INUNDATION IN THREE CITIES ON Author(s): Wang Xiaoming; Liu Philip L-F THE SOUTH COAST OF SRI LANKA Source: COASTAL ENGINEERING Volume: 58 Issue: 2 Pages: 10. Title: Modeling tsunami hazards from Manila trench to Taiwan Author(s): Wijetunge J. J.; Wang Xiaoming; Liu Philip L. -F. 173-183 DOI: 10.1016/j.coastaleng.2010.09.008 Published: Author(s): Wu Tso-Ren; Huang Hui-Chuan Source: JOURNAL OF EARTHQUAKE AND TSUNAMI Volume: 2 FEB 2011 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 Issue: 2 Pages: 133-155 Published: JUN 2008 Pages: 21-28 DOI: 10.1016/j.jseaes.2008.12.006 Published: SEP 4 5. Title: Field Survey of the Samoa Tsunami of 29 September 2009 16. Title: TSUNAMI SOURCE REGION PARAMETER 2009 Times Cited: 0 (from Web of Science) IDENTIFICATION AND TSUNAMI FORECASTING Author(s): Okal Emile A.; Fritz Hermann M.; Synolakis Costas Author(s): Liu Philip L. -F.; Wang Xiaoming E.; et al. 11. Title: Tsunami hazard and early warning system in South China Source: JOURNAL OF EARTHQUAKE AND TSUNAMI Volume: 2 Source: SEISMOLOGICAL RESEARCH LETTERS Volume: 81 Sea Issue: 2 Pages: 87-106 Published: JUN 2008 Issue: 4 Pages: 577-591 DOI: 10.1785/gssrl.81.4.577 Author(s): Liu Philip L. -F.; Wang Xiaoming; Salisbury Andrew J. Published: JUL-AUG 2010 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 17. Title: Boiom fric:on and its effects on periodic long wave Pages: 2-12 DOI: 10.1016/j.jseaes.2008.12.010 Published: SEP 4 propagaon 6. Title: Impact of a 1755-like tsunami in Huelva, Spain 2009 Author(s): Orfila A.; Simarro G.; Liu P. L. F. Author(s): Lima V. V.; Miranda J. M.; Bap:sta M. A.; et al. Source: COASTAL ENGINEERING Volume: 54 Issue: 11 Source: NATURAL HAZARDS AND EARTH SYSTEM SCIENCES Pages: 856-864 DOI: 10.1016/j.coastalene.2007.05.013 Volume: 10 Issue: 1 Pages: 139-148 Published: 2010 Published: NOV 2007 ( To be connued) (3). COMCOT has been widely validated: Synolakis solitary wave runup (1986, 1987). soliton Simulated by COMCOT (Wu, 2012) (NOAA) (4). Widely Used on Prac:cal Cases (4A). Simula-on Results for Sri Lanka • The model has been used to inves:gate several historical tsunami events, such as the 1960 Chilean tsunami, the 1992 Flores Islands (Indonesia) tsunami (Liu et al., 1994; Liu et al., 1995), the 2003 Algeria Tsunami (Wang and Liu, 2005) and more recently the 2004 Indian Ocean tsunami (Wang and Liu, 2006). Galle, Sri Lanka Inundaon (Products from COMCOT: Inundaon and flux direc:on) (4B). 311 Japan Tsunami ( Revealing Stability and High-speed Calculaon) Good comparison with Japan and American data. Good comparison with CWB gauge data 1. COMCOT only spends one (without astronomical :de). minute in computaon. 2. Good comparison with observaon data like 12 cm predic:on wave gauge height. (4C). COMCOT was applied in Naonal Disaster Prevenon Distribu:on of 22 poten:al tsunami sources T1, Mw=8.1 花蓮外海 T2, Mw=8.2 馬尼拉海溝 1 T3, Mw=8.4 馬尼拉海溝 2 T8,Mw=8.7 亞普海溝 Five Nested-grid were Applied to Simulate the Tsunami propaga-on. (Bathymetry and elevaon database in Taiwan were already build up.) (Nonlinear equaons and spherical coordinate were chosen in all simulaon.) Layer 1: 2 min (~3500m); Layer1 Layer2 Layer 2: ½ min (~900m); Layer 3: 1/8 min (~200m); Layer3 Layer 4: 1/32 min (~50m); Layer 5: 1/128 min (~20m); Inunda8on range and maximum wave height in Nanwan. 南灣 核三廠 後壁湖 These pictures indicate the tsunami energy transport from Yap Trench to Taiwan. Cartesian coordinate is not suitable in big domain because of error predicaon. • (5). Stable and Fast。 Parallelized by ASGC, COMCOT now is able to use all the mutli-core CPU resources • Thanks a lot to ASGC, especially Dr. Simon Lin (林誠謙 ) and his excellent team!! ( We tested COMCOT on a new 32-core server in NTU in 2010, Singapore. A case used to be done in 30 minutes can be finished in 2 minutes on the new machine.) 9 iCOMCOT: a grid/cloud-based Tsunami system COMCOT is now upgraded to a cloud system by ASGC. Countries worldwide are able to perform the simulaon on a mobile device. (1) Given a keynote speech invited by UNESCO (2) Interviewed by isgtw, London, UK hip://www.isgtw.org/feature/forecas:ng-wrath-tsunami Transfer COMCOT into a Storm Surge Model Pressure gradient and wind shear stress were added to the shallow water equaon. (1). Governing Equaons in Spherical Coordinate ​��/�� +​1/�cos� {​​​��/�� +​�/�� (cos�·�)} =0 Pressure gradient ​��/�� +​�ℎ/�cos� ​��/�� −�⋅�=−​ℎ/��cos� ​���/�� +​ 1/� ⋅​�↓�↑� Wind shear stress ​��/�� +​�ℎ/� ​��/�� +�⋅�=−​ℎ/�� ​���/�� +​1/� ⋅​�↓�↑� � : free surface elevaon �� : atmospheric pressure ℎ : s:ll water depth � : Coriolis parameter �: earth radius � : density of water �, � : longitude and latude of the earth ​�↓�↑� , ​�↓�↑� :surface wind shear stress P, Q :volume 6luxes in longitude and latitude (2). Verificaon by the analy:cal solu:on in the Cartesian Coordinate System With pressure gradient With wind shear stress ∂∂η 1 Pa ∂η g = gH= F s ∂∂xxρ ∂x x uuv uuv ∂Pxa =10000sin(2π / 5000) s FCVVxadww= ρ 1 ∂ηπ=∂Pxa =−1.02sin(2 / 5000) −5 gρw ∂η =2.1×× 10 5000= 0.105m P Vw:26 m/s 10m 10m 400m 5000m 400m 5000m Black: Analy:c Solu:on; Blue: Numerical Solu:on. Black: Analy:c Solu:on; Blue: Numerical Solu:on. (3). Verificaon in the Spherical Coordinate System Only Pressure Gradient Only Wind Shear Stress ​��/�� =−​1/�� ​�​�↓� /�� ​��/�� =​�cos�/�� ⋅​1/​ �↓� ⋅​�↓�↑� �​�↓� =200000cos(​2��/� ) uuv uuv FCVVs Vmsw = 20 / ψ = ρad w w Water Depth: 100 m. Black: Analy:c Solu:on; Blue :Numerical Solu:on. (4). Flow Chart of the Storm Surge Predic:on Atmospheric Model Input Data: ex: TWRF 1. CWB Warning Data 2. Typhoon Informaon Wave Model ex: WaveWatch III Parametric Wind Model: Holland Model (1980) Current Model Product Gauge Data: 2-D Output Data: 36 hrs wave height Surge Deviaon 36 hrs wind velocity Pressure Field 36 hrs pressure Wind Field 地形資料 水位計位置 (5). Parametric Wind Model ���� : maximum wind velocity • Holland Model � (1980) max: radius of maximum wind R max B PPac=+()exp[()] PP nc − − �� r : atmospheric pressure Pc − 900 � : Coriolis parameter B =2 − 160 ​�↓� : density of water BP()− P R R rf rf V =nc()exp[()]()maxBB− max +2 −​�↓� : ambient pressure w ρ rr22 a � : distance to storm center �� : wind velocity • Current Model ⎧42.6−⋅− 0.86 (Pc 990) R ⎪51.0 0.84 (P 980) max B ⎪ −⋅−c PPac=+( PP nc − )exp[ − ( ) ] r ⎪58.4−⋅− 0.74 (Pc 970) ⎪ 1 Vmax 2 RP63.0 0.46 ( 960) B = () max =⎨ −⋅−c (km) PP5.375 nc− ⎪70.0−⋅− 0.234 (P 930) ⎪ c Rrmax ⋅ ⎪80.0−⋅− 0.167 (Pc 870) VVw =2⋅max ⋅ 22 ⎪ Rrmax + ⎩80.0 (6).
Recommended publications
  • Effects of Climate Change on the World's Oceans
    3rd International Symposium Effects of Climate Change on the World’s Oceans March 21–27, 2015 Santos, Brazil Table of Contents Welcome � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � v Organizers and Sponsors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �vi Notes for Guidance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �ix Symposium Timetable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � x List of Sessions and Workshops � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � xiii Floor Plans � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �xiv Detailed Schedules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 Abstracts - Oral Presentations Keynote � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �77 Plenary Talks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �79 Theme Session S1 Role of advection and mixing in
    [Show full text]
  • Ensemble Forecast Experiment for Typhoon
    Ensemble Forecast Experiment for Typhoon Quantitatively Precipitation in Taiwan Ling-Feng Hsiao1, Delia Yen-Chu Chen1, Ming-Jen Yang1, 2, Chin-Cheng Tsai1, Chieh-Ju Wang1, Lung-Yao Chang1, 3, Hung-Chi Kuo1, 3, Lei Feng1, Cheng-Shang Lee1, 3 1Taiwan Typhoon and Flood Research Institute, NARL, Taipei 2Dept. of Atmospheric Sciences, National Central University, Chung-Li 3Dept. of Atmospheric Sciences, National Taiwan University, Taipei ABSTRACT The continuous torrential rain associated with a typhoon often caused flood, landslide or debris flow, leading to serious damages to Taiwan. Therefore the quantitative precipitation forecast (QPF) during typhoon period is highly needed for disaster preparedness and emergency evacuation operation in Taiwan. Therefore, Taiwan Typhoon and Flood Research Institute (TTFRI) started the typhoon quantitative precipitation forecast ensemble forecast experiment in 2010. The ensemble QPF experiment included 20 members. The ensemble members include various models (ARW-WRF, MM5 and CreSS models) and consider different setups in the model initial perturbations, data assimilation processes and model physics. Results show that the ensemble mean provides valuable information on typhoon track forecast and quantitative precipitation forecasts around Taiwan. For example, the ensemble mean track captured the sharp northward turning when Typhoon Megi (2010) moved westward to the South China Sea. The model rainfall also continued showing that the total rainfall at the northeastern Taiwan would exceed 1,000 mm, before the heavy rainfall occurred. Track forecasts for 21 typhoons in 2011 showed that the ensemble forecast has a comparable skill to those of operational centers and has better performance than a deterministic prediction. With an accurate track forecast for Typhoon Nanmadol, the ability for the model to predict rainfall distribution is significantly improved.
    [Show full text]
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Diagnosability and Description of a New Subspecies of Indo-Pacific
    Wang et al. Zoological Studies (2015) 54:36 DOI 10.1186/s40555-015-0115-x RESEARCH Open Access Diagnosability and description of a new subspecies of Indo-Pacific humpback dolphin, Sousa chinensis (Osbeck, 1765), from the Taiwan Strait John Y Wang1,2,3*, Shih Chu Yang4 and Samuel K Hung5 Abstract Background: Subspecies recognition can affect how people (scientists and non-scientists alike) view organisms and thus has important implications for research on, as well as the conservation of, these entities. Recently, a small group of Indo-Pacific humpback dolphins was discovered inhabiting the waters off central western Taiwan. This geographically isolated population possesses pigmentation patterns that are subtly, but noticeably, different from their nearest conspecifics in the neighbouring waters of the Jiulong River Estuary and Pearl River Estuary of mainland China. Due to this population’s low and declining numbers and the numerous threats it faces, it was assessed as critically endangered by the Red List of Threatened Species of the International Union for Conservation of Nature. The purpose of this study is to examine the degree of differentiation of the Taiwanese population to determine if subspecies recognition is warranted. Results: Analysis of the degree of differentiation in pigmentation patterns revealed nearly non-overlapping distributions between dolphins from Taiwanese waters and those from the Jiulong River + Pearl River estuaries of mainland China (the nearest known populations). The Taiwanese dolphins were clearly diagnosable from those of the Jiulong River + Pearl River estuaries under the most commonly accepted ‘75% rule’ for subspecies delimitation (with 94% of one group being separable from 99+% of the other).
    [Show full text]
  • Scale and Spatial Distribution Assessment of Rainfall-Induced Landslides in a Catchment with Mountain Roads
    Nat. Hazards Earth Syst. Sci., 18, 687–708, 2018 https://doi.org/10.5194/nhess-18-687-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Scale and spatial distribution assessment of rainfall-induced landslides in a catchment with mountain roads Chih-Ming Tseng1, Yie-Ruey Chen1, and Szu-Mi Wu2 1Department of Land Management and Development, Chang Jung Christian University, Tainan, 71101, Taiwan (ROC) 2Chen-Du Construction Limited, Taoyuan, 33059, Taiwan (ROC) Correspondence: Chih-Ming Tseng ([email protected]) Received: 14 July 2017 – Discussion started: 4 October 2017 Revised: 27 December 2017 – Accepted: 22 January 2018 – Published: 2 March 2018 Abstract. This study focused on landslides in a catchment Landslide susceptibility can be evaluated by analysing the with mountain roads that were caused by Nanmadol (2011) relationships between landslides and various factors that are and Kong-rey (2013) typhoons. Image interpretation tech- responsible for the occurrence of landslides (Brabb, 1984; niques were employed to for satellite images captured before Guzzetti et al., 1999, 2005). In general, the factors that af- and after the typhoons to derive the surface changes. A mul- fect landslides include predisposing factors (e.g. geology, to- tivariate hazard evaluation method was adopted to establish pography, and hydrology) and triggering factors (e.g. rainfall, a landslide susceptibility assessment model. The evaluation earthquakes, and anthropogenic factors) (Chen et al., 2013a, of landslide locations and relationship between landslide and b; Chue et al., 2015). Geological factors include lithological predisposing factors is preparatory for assessing and map- factors, structural conditions, and soil thickness; topograph- ping landslide susceptibility.
    [Show full text]
  • The Effect of Warm Water and Its Weak Negative Feedback on the Rapid Intensification of Typhoon Hato (2017)
    Vol.26 No.4 JOURNAL OF TROPICAL METEOROLOGY Dec 2020 Article ID: 1006-8775(2020) 04-0402-15 The Effect of Warm Water and Its Weak Negative Feedback on the Rapid Intensification of Typhoon Hato (2017) HUO Zi-mo (霍子墨), DUAN Yi-hong (端义宏), LIU Xin (刘 欣) (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081 China) Abstract: Typhoon Hato (2017) went through a rapid intensification (RI) process before making landfall in Zhuhai, Guangdong Province, as the observational data shows. Within 24 hours, its minimum sea level pressure deepened by 35hPa and its maximum sustained wind speed increased by 20m s-1. According to satellite observations, Hato encountered a large area of warm water and two warm core rings before the RI process, and the average sea surface temperature cooling (SSTC) induced by Hato was only around 0.73℃. Air-sea coupled simulations were implemented to investigate the specific impact of the warm water on its RI process. The results showed that the warm water played an important role by facilitating the RI process by around 20%. Sea surface temperature budget analysis showed that the SSTC induced by mixing mechanism was not obvious due to the warm water. Besides, the cold advection hardly caused any SSTC, either. Therefore, the SSTC induced by Hato was much weaker compared with that in general cases. The negative feedback between ocean and Hato was restrained and abundant heat and moisture were sufficiently supplied to Hato. The warm water helped heat flux increase by around 20%, too. Therefore, the warm water influenced the structure and the intensity of Hato.
    [Show full text]
  • List of Insured Financial Institutions (PDF)
    401 INSURED FINANCIAL INSTITUTIONS 2021/5/31 39 Insured Domestic Banks 5 Sanchong City Farmers' Association of New Taipei City 62 Hengshan District Farmers' Association of Hsinchu County 1 Bank of Taiwan 13 BNP Paribas 6 Banciao City Farmers' Association of New Taipei City 63 Sinfong Township Farmers' Association of Hsinchu County 2 Land Bank of Taiwan 14 Standard Chartered Bank 7 Danshuei Township Farmers' Association of New Taipei City 64 Miaoli City Farmers' Association of Miaoli County 3 Taiwan Cooperative Bank 15 Oversea-Chinese Banking Corporation 8 Shulin City Farmers' Association of New Taipei City 65 Jhunan Township Farmers' Association of Miaoli County 4 First Commercial Bank 16 Credit Agricole Corporate and Investment Bank 9 Yingge Township Farmers' Association of New Taipei City 66 Tongsiao Township Farmers' Association of Miaoli County 5 Hua Nan Commercial Bank 17 UBS AG 10 Sansia Township Farmers' Association of New Taipei City 67 Yuanli Township Farmers' Association of Miaoli County 6 Chang Hwa Commercial Bank 18 ING BANK, N. V. 11 Sinjhuang City Farmers' Association of New Taipei City 68 Houlong Township Farmers' Association of Miaoli County 7 Citibank Taiwan 19 Australia and New Zealand Bank 12 Sijhih City Farmers' Association of New Taipei City 69 Jhuolan Township Farmers' Association of Miaoli County 8 The Shanghai Commercial & Savings Bank 20 Wells Fargo Bank 13 Tucheng City Farmers' Association of New Taipei City 70 Sihu Township Farmers' Association of Miaoli County 9 Taipei Fubon Commercial Bank 21 MUFG Bank 14
    [Show full text]
  • [カテゴリー]Location Type [スポット名]English Location Name [住所
    ※IS12TではSSID"ilove4G"はご利用いただけません [カテゴリー]Location_Type [スポット名]English_Location_Name [住所]Location_Address1 [市区町村]English_Location_City [州/省/県名]Location_State_Province_Name [SSID]SSID_Open_Auth Misc Hi-Life-Jingrong Kaohsiung Store No.107 Zhenxing Rd. Qianzhen Dist. Kaohsiung City 806 Taiwan (R.O.C.) Kaohsiung CHT Wi-Fi(HiNet) Misc Family Mart-Yongle Ligang Store No.4 & No.6 Yongle Rd. Ligang Township Pingtung County 905 Taiwan (R.O.C.) Pingtung CHT Wi-Fi(HiNet) Misc CHT Fonglin Service Center No.62 Sec. 2 Zhongzheng Rd. Fenglin Township Hualien County Hualien CHT Wi-Fi(HiNet) Misc FamilyMart -Haishan Tucheng Store No. 294 Sec. 1 Xuefu Rd. Tucheng City Taipei County 236 Taiwan (R.O.C.) Taipei CHT Wi-Fi(HiNet) Misc 7-Eleven No.204 Sec. 2 Zhongshan Rd. Jiaoxi Township Yilan County 262 Taiwan (R.O.C.) Yilan CHT Wi-Fi(HiNet) Misc 7-Eleven No.231 Changle Rd. Luzhou Dist. New Taipei City 247 Taiwan (R.O.C.) Taipei CHT Wi-Fi(HiNet) Restaurant McDonald's 1F. No.68 Mincyuan W. Rd. Jhongshan District Taipei CHT Wi-Fi(HiNet) Restaurant Cobe coffee & beauty 1FNo.68 Sec. 1 Sanmin Rd.Banqiao City Taipei County Taipei CHT Wi-Fi(HiNet) Misc Hi-Life - Taoliang store 1F. No.649 Jhongsing Rd. Longtan Township Taoyuan County Taoyuan CHT Wi-Fi(HiNet) Misc CHT Public Phone Booth (Intersection of Sinyi R. and Hsinsheng South R.) No.173 Sec. 1 Xinsheng N. Rd. Dajan Dist. Taipei CHT Wi-Fi(HiNet) Misc Hi-Life-Chenhe New Taipei Store 1F. No.64 Yanhe Rd. Anhe Vil. Tucheng Dist. New Taipei City 236 Taiwan (R.O.C.) Taipei CHT Wi-Fi(HiNet) Misc 7-Eleven No.7 Datong Rd.
    [Show full text]
  • Combinatorial Optimization for WRF Physical Parameterization Schemes: a Case Study of Three-Day Typhoon Simulations Over the Northwest Pacific Ocean
    atmosphere Article Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean Zhenhua Di 1,2,* , Wei Gong 1 , Yanjun Gan 3 , Chenwei Shen 1 and Qingyun Duan 1 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; [email protected] (W.G.); [email protected] (C.S.); [email protected] (Q.D.) 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 3 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-5880-0217 Received: 21 March 2019; Accepted: 23 April 2019; Published: 1 May 2019 Abstract: Quantifying a set of suitable physics parameterization schemes for the Weather Research and Forecasting (WRF) model is essential for obtaining highly accurate typhoon forecasts. In this study, a systematic Tukey-based combinatorial optimization method was proposed to determine the optimal physics schemes of the WRF model for 15 typhoon simulations over the Northwest Pacific Ocean, covering all available schemes of microphysics (MP), cumulus (CU), and planetary boundary layer (PBL) physical processes. Results showed that 284 scheme combination searches were sufficient to find the optimal scheme combinations for simulations of track (km), central sea level pressure 1 (CSLP, hPa), and 10 m maximum surface wind (10-m wind, m s− ), compared with the 700 sets of full combinations (i.e., 10 MP 7 CU 10 PBL).
    [Show full text]
  • Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea
    remote sensing Article Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea Zhaoyue Ma 1, Yuanzhi Zhang 1,2,*, Renhao Wu 3 and Rong Na 4 1 School of Marine Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 2 Institute of Asia-Pacific Studies, Faculty of Social Sciences, Chinese University of Hong Kong, Hong Kong 999777, China 3 School of Atmospheric Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; [email protected] 4 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1888-885-3470 Abstract: The strong interaction between a typhoon and ocean air is one of the most important forms of typhoon and sea air interaction. In this paper, the daily mean sea surface temperature (SST) data of Advanced Microwave Scanning Radiometer for Earth Observation System (EOS) (AMSR-E) are used to analyze the reduction in SST caused by 30 westward typhoons from 1998 to 2018. The findings reveal that 20 typhoons exerted obvious SST cooling areas. Moreover, 97.5% of the cooling locations appeared near and on the right side of the path, while only one appeared on the left side of the path. The decrease in SST generally lasted 6–7 days. Over time, the cooling center continued to diffuse, and the SST gradually rose. The slope of the recovery curve was concentrated between 0.1 and 0.5.
    [Show full text]
  • Non Binding Translation for Convenience Only
    Non binding translation 6.4 SceneryFor and convenience leisure only Scenic beauty and leisure environment surveys for this project were carried out in August 2016 and May 2017. The survey results were similar and there was not much change in the overall environment. Photos of scenic spots from the two surveys are shown in Figure 6.4-1. Provincial Highway 61 at the estuary of Provincial Highway 61 at the estuary of Old Huwei River (2016.08.18) Old Huwei River (2017.05.06) Santiaolun Fishing Harbor (2016.08.18) Santiaolun Fishing Harbor (2017.05.06) Shoal south of Santiaolun Fishing Harbor Shoal south of Santiaolun Fishing Harbor (2016.08.18) (2016.05.06) Figure 6.4-1 Photos of the project's scenic spots taken during surveys in 2016 and 2017 6-312 Non binding translation For convenience only Observation platform on the western Observation platform on the western embankment of Gangxi Village embankment of Gangxi Village (2016.08.18) (2017.05.06) On the Aogu Wetland embankment On the Aogu Wetland embankment (2016.08.18) (2017.05.06) Dongshih Fisherman's Wharf (2016.08.18) Dongshih Fisherman's Wharf (2017.05.06) Figure 6.4-1 Photos of the project's scenic spots taken during surveys in 2016 and 2017 (continued) 6.4.1 Environmental scenic beauty I. Survey and analysis of the current development site scenic beauty status The wind farm is located off the coasts of Sihu Township and Kouhu Township, Yunlin County. Provincial Highways 17 and 61 (Western Coast Expressway) and County Roadways 155, 160, 164, and 166 are the main traffic access ways along the coast of Yunlin and Chiayi.
    [Show full text]
  • Sustainable Campus in Taiwan
    Challenge 2008 Taiwan National Development Plan Sustainable Campus ◎ S u in Taiwan Taipei s t a i n a b l e C A movement from「HEART」 a m ◎ p A march toward a u s [sustainable Taiwan] ◎ Tainan H. Jenny Su, ScD Professor of Environmental Health Sciences National Cheng Kung University, Tainan, Taiwan Taiwan Council Member National Council for Sustainable Development Campus: the basic unit of Taiwan’s new “green island initiative”, 2000 A reflection from “Earthquake 921”, 1999 Establishing green industries – local service Network information Shaping community image sharing Promoting green industries and the coexisting network – international join venture • Campus as a Community information Environment preservation/ S deliverance u Industry simulation for Local s rescue center? t species a Cultural i Information n Green and Center Community a -Safety b ecological Network Traveling l e Center Solar and wind corridors Center C -Community generated power a m Sustaining Rainwater storage p Ecology Resource and u -Education original Center s Sustainable ecology Energy cycling -Ecology Campus Center Community Community Cultural Activity Center Local culture General Center Sports and activity preservation education facilities Center Performing Community/District arts exhibits gatherings Middle and Adult and 1999.09.21 Executive Secretary for Environmental Protection elementary school community and Education, Ministry of Education, TAIWAN education institutions Sustainable Campus Eco-City Eco-County Community Eco-Country S u s t a i n a b l e C a m Execution and Supervision p u s Green Island Sustainable Taiwan 1 Building a Sustainable Campus Funding items Sustainable site mediation for hardware renovation Top soil improvement 1.
    [Show full text]