The Development of COMCOT Storm Surge Model and the Applicaon to 2013 Typhoon Haiyan 2014/03/25 (二 ) Prof. Tso-Ren Wu (吳祚任) 蔡育霖、莊美惠、林君蔚 [email protected] Naonal Central University (Taiwan) 國立中央大學(台灣) Introduc:on of COMCOT (Cornell Mul:-grid Coupled Tsunami Model) • Solve shallow water equaons on both spherical and Cartesian coordinate systems • Explicit leapfrog Finite Difference Method for stable and high speed calculaon system • Mul:/Nested-grid system for mul:ple wave scales • Moving Boundary Scheme for inundaon (2). COMCOT has been used on many scien:fic papers At least 26 SCI papers were published during 2001~2011 (Including Science) 1. Title: Long waves through emergent coastal vegetaon 7. Title: An insitu borescopic quan:tave imaging profiler for the 12. Title: Analy:cal and numerical simulaon of tsunami Author(s): Mei Chiang C.; Chan I-Chi; Liu Philip L. -F.; et al. measurement of high concentraon sediment velocity mi:gaon by mangroves in Penang, Malaysia Source: JOURNAL OF FLUID MECHANICS Volume: 687 Pages: Author(s): Cowen Edwin A.; Dudley Russell D.; Liao Qian; et al. Author(s): Teh Su Yean; Koh Hock Lye; Liu Philip Li-Fan; et al. 461-491 DOI: 10.1017/jfm.2011.373 Published: NOV 2011 Source: EXPERIMENTS IN FLUIDS Volume: 49 Issue: 1 Special Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: SI Pages: 77-88 DOI: 10.1007/s00348-009-0801-8 Issue: 1 Pages: 38-46 DOI: 10.1016/j.jseaes.2008.09.007 2. Title: Insights on the 2009 South Pacific tsunami in Samoa Published: JUL 2010 Published: SEP 4 2009 and Tonga from field surveys and numerical simulaons Author(s): Fritz Hermann M.; Borrero Jose C.; Synolakis 8. Title: Tsunami hazard from the subducon megathrust of the 13. Title: Simulaon of Andaman 2004 tsunami for assessing Costas E.; et al. South China Sea: Part I. Source characterizaon and the resul:ng impact on Malaysia Source: EARTH-SCIENCE REVIEWS Volume: 107 Issue: 1-2 tsunami Author(s): Koh Hock Lye; Teh Su Yean; Liu Philip Li-Fan; et al. Special Issue: SI Pages: 66-75 DOI: 10.1016/j.earscirev. Author(s): Megawa Kusnowidjaja; Shaw Felicia; Sieh Kerry; et al. Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 2011.03.004 Published: JUL 2011 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 Issue: 1 Pages: 74-83 DOI: 10.1016/j.jseaes.2008.09.008 Pages: 13-20 DOI: 10.1016/j.jseaes.2008.11.012 Published: SEP 4 Published: SEP 4 2009 3. Title: Solid landslide generated waves 2009 Author(s): Wang Yang; Liu Philip L. -F.; Mei Chiang C. 14. Title: SPECIAL ISSUE Tsunamis in Asia Preface Source: JOURNAL OF FLUID MECHANICS Volume: 675 Pages: 9. Title: Simulaon of Andaman 2004 tsunami for assessing impact Author(s): Liu Philip L. -F.; Huang Bor-Shouh 529-539 DOI: 10.1017/S0022112011000681 Published: on Malaysia Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 MAY 2011 Author(s): Koh Hock Lye; Teh Su Yean; Liu Philip Li-Fan; et al. Issue: 1 Pages: 1-1 DOI: 10.1016/j.jseaes.2009.05.001 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 Published: SEP 4 2009 4. Title: An explicit finite difference model for simulang Pages: 74-83 DOI: 10.1016/j.jseaes.2008.09.008 Published: SEP 4 weakly nonlinear and weakly dispersive waves over slowly 2009 15. Title: INDIAN OCEAN TSUNAMI ON 26 DECEMBER 2004: varying water depth Times Cited: 0 (from Web of Science) NUMERICAL MODELING OF INUNDATION IN THREE CITIES ON Author(s): Wang Xiaoming; Liu Philip L-F THE SOUTH COAST OF SRI LANKA Source: COASTAL ENGINEERING Volume: 58 Issue: 2 Pages: 10. Title: Modeling tsunami hazards from Manila trench to Taiwan Author(s): Wijetunge J. J.; Wang Xiaoming; Liu Philip L. -F. 173-183 DOI: 10.1016/j.coastaleng.2010.09.008 Published: Author(s): Wu Tso-Ren; Huang Hui-Chuan Source: JOURNAL OF EARTHQUAKE AND TSUNAMI Volume: 2 FEB 2011 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 Issue: 2 Pages: 133-155 Published: JUN 2008 Pages: 21-28 DOI: 10.1016/j.jseaes.2008.12.006 Published: SEP 4 5. Title: Field Survey of the Samoa Tsunami of 29 September 2009 16. Title: TSUNAMI SOURCE REGION PARAMETER 2009 Times Cited: 0 (from Web of Science) IDENTIFICATION AND TSUNAMI FORECASTING Author(s): Okal Emile A.; Fritz Hermann M.; Synolakis Costas Author(s): Liu Philip L. -F.; Wang Xiaoming E.; et al. 11. Title: Tsunami hazard and early warning system in South China Source: JOURNAL OF EARTHQUAKE AND TSUNAMI Volume: 2 Source: SEISMOLOGICAL RESEARCH LETTERS Volume: 81 Sea Issue: 2 Pages: 87-106 Published: JUN 2008 Issue: 4 Pages: 577-591 DOI: 10.1785/gssrl.81.4.577 Author(s): Liu Philip L. -F.; Wang Xiaoming; Salisbury Andrew J. Published: JUL-AUG 2010 Source: JOURNAL OF ASIAN EARTH SCIENCES Volume: 36 Issue: 1 17. Title: Boiom fric:on and its effects on periodic long wave Pages: 2-12 DOI: 10.1016/j.jseaes.2008.12.010 Published: SEP 4 propagaon 6. Title: Impact of a 1755-like tsunami in Huelva, Spain 2009 Author(s): Orfila A.; Simarro G.; Liu P. L. F. Author(s): Lima V. V.; Miranda J. M.; Bap:sta M. A.; et al. Source: COASTAL ENGINEERING Volume: 54 Issue: 11 Source: NATURAL HAZARDS AND EARTH SYSTEM SCIENCES Pages: 856-864 DOI: 10.1016/j.coastalene.2007.05.013 Volume: 10 Issue: 1 Pages: 139-148 Published: 2010 Published: NOV 2007 ( To be connued) (3). COMCOT has been widely validated: Synolakis solitary wave runup (1986, 1987). soliton Simulated by COMCOT (Wu, 2012) (NOAA) (4). Widely Used on Prac:cal Cases (4A). Simula-on Results for Sri Lanka • The model has been used to inves:gate several historical tsunami events, such as the 1960 Chilean tsunami, the 1992 Flores Islands (Indonesia) tsunami (Liu et al., 1994; Liu et al., 1995), the 2003 Algeria Tsunami (Wang and Liu, 2005) and more recently the 2004 Indian Ocean tsunami (Wang and Liu, 2006). Galle, Sri Lanka Inundaon (Products from COMCOT: Inundaon and flux direc:on) (4B). 311 Japan Tsunami ( Revealing Stability and High-speed Calculaon) Good comparison with Japan and American data. Good comparison with CWB gauge data 1. COMCOT only spends one (without astronomical :de). minute in computaon. 2. Good comparison with observaon data like 12 cm predic:on wave gauge height. (4C). COMCOT was applied in Naonal Disaster Prevenon Distribu:on of 22 poten:al tsunami sources T1, Mw=8.1 花蓮外海 T2, Mw=8.2 馬尼拉海溝 1 T3, Mw=8.4 馬尼拉海溝 2 T8,Mw=8.7 亞普海溝 Five Nested-grid were Applied to Simulate the Tsunami propaga-on. (Bathymetry and elevaon database in Taiwan were already build up.) (Nonlinear equaons and spherical coordinate were chosen in all simulaon.) Layer 1: 2 min (~3500m); Layer1 Layer2 Layer 2: ½ min (~900m); Layer 3: 1/8 min (~200m); Layer3 Layer 4: 1/32 min (~50m); Layer 5: 1/128 min (~20m); Inunda8on range and maximum wave height in Nanwan. 南灣 核三廠 後壁湖 These pictures indicate the tsunami energy transport from Yap Trench to Taiwan. Cartesian coordinate is not suitable in big domain because of error predicaon. • (5). Stable and Fast。 Parallelized by ASGC, COMCOT now is able to use all the mutli-core CPU resources • Thanks a lot to ASGC, especially Dr. Simon Lin (林誠謙 ) and his excellent team!! ( We tested COMCOT on a new 32-core server in NTU in 2010, Singapore. A case used to be done in 30 minutes can be finished in 2 minutes on the new machine.) 9 iCOMCOT: a grid/cloud-based Tsunami system COMCOT is now upgraded to a cloud system by ASGC. Countries worldwide are able to perform the simulaon on a mobile device. (1) Given a keynote speech invited by UNESCO (2) Interviewed by isgtw, London, UK hip://www.isgtw.org/feature/forecas:ng-wrath-tsunami Transfer COMCOT into a Storm Surge Model Pressure gradient and wind shear stress were added to the shallow water equaon. (1). Governing Equaons in Spherical Coordinate ��/�� +1/�cos� {��/�� +�/�� (cos�·�)} =0 Pressure gradient ��/�� +�ℎ/�cos� ��/�� −�⋅�=−ℎ/��cos� ���/�� + 1/� ⋅�↓�↑� Wind shear stress ��/�� +�ℎ/� ��/�� +�⋅�=−ℎ/�� ���/�� +1/� ⋅�↓�↑� � : free surface elevaon �� : atmospheric pressure ℎ : s:ll water depth � : Coriolis parameter �: earth radius � : density of water �, � : longitude and latude of the earth �↓�↑� , �↓�↑� :surface wind shear stress P, Q :volume 6luxes in longitude and latitude (2). Verificaon by the analy:cal solu:on in the Cartesian Coordinate System With pressure gradient With wind shear stress ∂∂η 1 Pa ∂η g = gH= F s ∂∂xxρ ∂x x uuv uuv ∂Pxa =10000sin(2π / 5000) s FCVVxadww= ρ 1 ∂ηπ=∂Pxa =−1.02sin(2 / 5000) −5 gρw ∂η =2.1×× 10 5000= 0.105m P Vw:26 m/s 10m 10m 400m 5000m 400m 5000m Black: Analy:c Solu:on; Blue: Numerical Solu:on. Black: Analy:c Solu:on; Blue: Numerical Solu:on. (3). Verificaon in the Spherical Coordinate System Only Pressure Gradient Only Wind Shear Stress ��/�� =−1/�� ��↓� /�� ��/�� =�cos�/�� ⋅1/ �↓� ⋅�↓�↑� ��↓� =200000cos(2��/� ) uuv uuv FCVVs Vmsw = 20 / ψ = ρad w w Water Depth: 100 m. Black: Analy:c Solu:on; Blue :Numerical Solu:on. (4). Flow Chart of the Storm Surge Predic:on Atmospheric Model Input Data: ex: TWRF 1. CWB Warning Data 2. Typhoon Informaon Wave Model ex: WaveWatch III Parametric Wind Model: Holland Model (1980) Current Model Product Gauge Data: 2-D Output Data: 36 hrs wave height Surge Deviaon 36 hrs wind velocity Pressure Field 36 hrs pressure Wind Field 地形資料 水位計位置 (5). Parametric Wind Model ���� : maximum wind velocity • Holland Model � (1980) max: radius of maximum wind R max B PPac=+()exp[()] PP nc − − �� r : atmospheric pressure Pc − 900 � : Coriolis parameter B =2 − 160 �↓� : density of water BP()− P R R rf rf V =nc()exp[()]()maxBB− max +2 −�↓� : ambient pressure w ρ rr22 a � : distance to storm center �� : wind velocity • Current Model ⎧42.6−⋅− 0.86 (Pc 990) R ⎪51.0 0.84 (P 980) max B ⎪ −⋅−c PPac=+( PP nc − )exp[ − ( ) ] r ⎪58.4−⋅− 0.74 (Pc 970) ⎪ 1 Vmax 2 RP63.0 0.46 ( 960) B = () max =⎨ −⋅−c (km) PP5.375 nc− ⎪70.0−⋅− 0.234 (P 930) ⎪ c Rrmax ⋅ ⎪80.0−⋅− 0.167 (Pc 870) VVw =2⋅max ⋅ 22 ⎪ Rrmax + ⎩80.0 (6).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages34 Page
-
File Size-