<<

New in IceCube with Double Bang signals

Iv´anJes´usMart´ınezSoler

Based in a work done with Pilar Coloma, Pedro A.N. Machado and Ian M. Shoemaker

[email protected]

WIN2017

Instituto de Física Teórica UAM-CSIC

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 1 / 16 Overview

1 Introduction

2 New Physics Scenario Sterile via the Neutral Current

3 IceCube Effective Volume Events

4 Results: Neutral current

5 New Pysics Scenario Transition magnetic moment

6 Results: Magnetic moment

7 Conclusion

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 2 / 16 Introduction: Double Bang

Standard signature of ντ

ντ CC interaction produce τ and a shower (1 shower)

τ decay (2 shower) I τ emit cherenkov radiation

For very well separates showers (∼ 100m) Eντ ≥ 2PeV

Background negligible

Not detected yet

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 3 / 16 Introduction: Double Bang for new physics

Double bang signals to look for new physics Two bangs inside the detector I 1st shower ν interaction I 2nd shower N decay I No cherenkov radiation in between

What kind of new physics?

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 4 / 16 New Physics Scenario

1. BSM: Heavy

Sterile posses mass mixing with active X ναL = UαmνmL + Uα4N4L In the presence of ν − N − Z interaction: strongs bounds on the mixing between N and νe, νµ

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 5 / 16 New Physics Scenario

1. BSM: Heavy sterile neutrino

Sterile posses mass mixing with active neutrinos X ναL = UαmνmL + Uα4N4L In the presence of ν − N − Z interaction: strongs bounds on the mixing between N and νe, νµ

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 5 / 16 New Physics Scenario

1. Standard scenario: Heavy sterile neutrino

Sterile posses mass mixing with active neutrinos X ναL = UαmνmL + Uα4N4L

In the presence of ν − N − Z interaction: we are going to constraint Uτ4 1

10-1 DELPHI

10-2 2  4 τ U  10-3

CHARM

10-4

10-5 0.0 0.5 1.0 1.5 2.0 2.5

M4 (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 6 / 16 Sterile neutrino via the Neutral Current

The double bang signal comes from N ν + N → N + W τ 4 visble+invible N4 → visible + invible Z

P W For the decay length contribute the processes 0 I N4 → νlP (Pseudoscalar mesons) 0 I N4 → νlV (Neutral vector mesons) − + I N4 → l P (Charged pseudoscalar mesons) − + I N4 → l V (Charged vector mesons) + I N4 → τνll τ + − I N4 → νl1 l2 l2 I N4 → ννν¯

2 The decay length depens on M4 and on |Uτ4| Cross section calculated with GENIE (Coherence + Resonance + DIS) 2 I Proportional to mixing parameter |Uτ4|

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 7 / 16 IceCube detectors

IceCube

I Triangular grid of strings with a horizontal spacing of 125m I 78 vertical strings I 60 DOMs per string with a vertical separation of 17m

DeepCore

I 8 closely-spaced strings in the center of IC + 7 central IceCube strings I Horizontal spacing of 72m I 50 DOMs with vertical spacing of 7m + 10 DOMs with vertical spacing of 10m

Event Topologies

I Tracks I Showers

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 8 / 16 Effective Volume

Double Pulse (2 separate showers in the full detector) I Minimum distance betweeen showers defined by DOMs resolution wave form I ≥ 20m between showers Our Monte Carlo

Energy threshold of 5GeV per shower 1000 I Minimum energy detected by DeepCore 800 600

Maximum distance covered by light of 36m Y(m) 400

200 Simulation include DOMs position and triggers 0 I SMT3 for DeepCore -1500 I SMT4 for IceCube -1800 Background

Depth(m) -2100 I Coincident atmospheric cascades

I 0.05/year -2400 -400 -200 0 200 400 600 800 X(m)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 9 / 16 Events

The number of events in the detector is given

dφ R 0 νµ dσντ ν4 N (L) = T dEd cos θdE dEd cos θ Pµ→τ (E, cos θ) dEdE0 Pd (L) Veff (L, cos θ)

We consider E ∈ [10, 100] GeV 0 I The energy of the heavy neutrino 5GeV ≤ E ≤ E − 5GeV I The showers ≥ 5GeV

φνµ atmospheric flux −2.7 I φ ∼ E The biggest contribution come from low energy neutrinos

Pµ→τ 3

−L/Γ Decay probability Pd (L) = e /Γ

The results correspond with 6 year.

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 10 / 16 Results: Neutral Currents

1

10-1 DELPHI

10-2 2  4 τ U  10-3

CHARM

10-4

10-5 0.0 0.5 1.0 1.5 2.0 2.5

M4 (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 11 / 16 Results: Neutral Currents

1

10-1 DELPHI

10-2 2  4

τ DeepCore U  10-3

CHARM

10-4 IceCube/DeepCore

10-5 0.0 0.5 1.0 1.5 2.0 2.5 M (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 11 / 16 Results: Neutral Currents

1

10-1 DELPHI

10-2 2 

4 N τ IceCube/DeepCore ( ev>10) U  10-3

CHARM

-4 10 IceCube/DeepCore (Nev>1)

10-5 0.0 0.5 1.0 1.5 2.0 2.5 M (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 11 / 16 New Physics Scenario

2. Neutrino magnetic moment

We are interested in a transition magnetic moment Weak constraints 10-4 ¯ µν > MeV L ⊃ −µν N4σµν PLναF -γ decoupling 10-5 ν N -6 ALEPH 10 DONUT B -7 / μ 10 tr μ -8 10 NOMAD GEMMA Borexino CHARM-II 10-9

10-10 10-4 10-3 10-2 10-1 100 101 mN (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 12 / 16 Transition magnetic moment

We have included the interaction with nucleons and electrons

For nucleons. In the DIS regime 2    2  d σN 2 2 P 2 (2−y) dxdy = ge µν q eqfq (x) y − y

For electrons  4 2  dσe 2 (ν−Me)M4 (ν−2E−Me)M4 1 1 = µν αem 2 2 2 + 2 + − dν 8ν E Me 4νE Me ν E

The decay length ν4 → νiγ µ2 M 3 Γ = ν 4 16

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 13 / 16 Results: Magnetic moment

νµ − N transition

10-4 > MeV ν-γ decoupling 10-5

10-6 B -7 / μ 10 tr μ

-8 10 NOMAD Borexino CHARM-II 10-9

10-10 10-4 10-3 10-2 10-1 100 101 mN (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 14 / 16 Results: Magnetic moment

νµ − N transition

10-4 > MeV -γ decoupling 10-5 ν

10-6 B -7 / μ 10 tr μ -8 10 NOMAD

Borexino CHARM-II 10-9 IceCube/DeepCore 10-10 Preliminary 10-4 10-3 10-2 10-1 100 101 mN (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 14 / 16 Results: Magnetic moment

νµ − N transition

10-4 > MeV -γ decoupling 10-5 ν

10-6

B IceCube/DeepCore > 10 -7 / μ 10 tr μ -8 10 NOMAD

Borexino CHARM-II 10-9 IceCube/DeepCore > 1 10-10 Preliminary 10-4 10-3 10-2 10-1 100 101 mN (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 14 / 16 Results: Magnetic moment

ντ − N transition

10-4 > MeV -γ decoupling 10-5 ν

10-6 ALEPH DONUT B -7 / μ 10 tr μ 10-8 Borexino

10-9

10-10 10-4 10-3 10-2 10-1 100 101 mN (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 15 / 16 Results: Magnetic moment

ντ − N transition

10-4 > MeV -γ decoupling 10-5 ν

10-6 ALEPH DONUT B -7 / μ 10 tr μ 10-8 Borexino

10-9 IceCube/DeepCore > 1

10-10 Preliminary 10-4 10-3 10-2 10-1 100 101 mN (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 15 / 16 Results: Magnetic moment

ντ − N transition

10-4 > MeV ν-γ decoupling 10-5

10-6 ALEPH DONUT B -7 / μ 10 IceCube/DeepCore > 10 tr μ 10-8 Borexino

10-9 IceCube/DeepCore > 1

10-10 Preliminary 10-4 10-3 10-2 10-1 100 101 mN (GeV)

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 15 / 16 Conclusion

Double Bang signals can probe new physics

Sterile neutrino via neutral current

I IceCube can put a competitive bound on M4 ∈ [0.1, ∼ 2.5]GeV and 2 −5 |Vτ4| ∈ [10 , 1]

Neutrino transition magnetic moment

I IceCube can put a competitive bound on µν for ντ and νµ for −3 −9 M4 ∈ [10 , 1]GeV and µν ∼ 10

Iv´anJes´usMart´ınezSoler (IFT) Double Bang signals in IceCube WIN2017 16 / 16