Majorana Particles in Physics and Mathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Majorana Fermions in Condensed Matter Physics: the 1D Nanowire Case
Majorana Fermions in Condensed Matter Physics: The 1D Nanowire Case Philip Haupt, Hirsh Kamakari, Edward Thoeng, Aswin Vishnuradhan Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada (Dated: November 24, 2018) Majorana fermions are fermions that are their own antiparticles. Although they remain elusive as elementary particles (how they were originally proposed), they have rapidly gained interest in condensed matter physics as emergent quasiparticles in certain systems like topological supercon- ductors. In this article, we briefly review the necessary theory and discuss the \recipe" to create Majorana particles. We then consider existing experimental realisations and their methodologies. I. MOTIVATION A). Kitaev used a simplified quantum wire model to show Ettore Majorana, in 1937, postulated the existence of how Majorana modes might manifest as an emergent an elementary particle which is its own antiparticle, so phenomena, which we will now discuss. Consider 1- called Majorana fermions [1]. It is predicted that the neu- dimensional tight binding chain with spinless fermions trinos are one such elementary particle, which is yet to and p-orbital hopping. The use of unphysical spinless be detected via extremely rare neutrino-less double beta- fermions calls into question the validity of the model, decay. The research on Majorana fermions in the past but, as has been subsequently realised, in the presence few years, however, have gained momentum in the com- of strong spin orbit coupling it is possible for electrons pletely different field of condensed matter physics. Arti- to be approximated as spinless in the presence of spin- ficially engineered low-dimensional nanostructures which orbit coupling as well as a Zeeman field [9]. -
$ Z $ Boson Mediated Dark Matter Beyond the Effective Theory
MCTP-16-27 FERMILAB-PUB-16-534-T Z boson mediated dark matter beyond the effective theory John Kearney Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510 USA Nicholas Orlofsky and Aaron Pierce Michigan Center for Theoretical Physics (MCTP) Department of Physics, University of Michigan, Ann Arbor, MI 48109 (Dated: April 11, 2017) Direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter|a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Z boson, but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z-mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches. I. INTRODUCTION Z, and their spin-dependent (SD) couplings, which at tree level arise from exchange of the Z. The latest bounds on SI scattering arise from PandaX Weakly interacting massive particles (WIMPs) re- [1] and LUX [2]. DM that interacts with the Z main an attractive thermal dark matter (DM) can- boson via vectorial couplings, g (¯χγ χ)Zµ, is very didate. -
Introductory Lectures on Quantum Field Theory
Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties. -
Part V Appendices a Vector Calculus
Part V Appendices A Vector calculus It is often useful in physics⎛ ⎞ to describe the position of some object x ⎜ ⎟ using three numbers ⎝y⎠. This is what we call a vector v and de- z note by a little arrow above the letter. The three numbers are the components of the vector along the three coordinate axes. The first number tells us how far the vector in question goes in the x-direction, the second how far in the y-direction⎛ ⎞ and the third how far in the 0 ⎜ ⎟ z-direction. For example, w = ⎝4⎠ is a vector that points exclusively 0 in the y-direction. Vectors can be added ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ v w v + w ⎜ x⎟ ⎜ x⎟ ⎜ x x⎟ = = → + = 1 v ⎝vy⎠ w ⎝wy⎠ v w ⎝vy + wy⎠ (A. ) vz wz vz + wy and multiplied ⎛ ⎞ ⎛ ⎞ v w ⎜ x⎟ ⎜ x⎟ · = · = + + 2 v w ⎝vy⎠ ⎝wy⎠ vxwx vywy vzwz. (A. ) vz wz The result of this multiplication is not a vector, but a number (= a scalar), hence the name: scalar product. The scalar product of a vec- tor with itself is directly related to its length: √ length(v)= v ·v. (A.3) Take note that we can’t simply write three quantities below each other between two brackets and expect it to be a vector. For example, © Springer International Publishing AG 2018 J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics, https://doi.org/10.1007/978-3-319-66631-0 256 physics from symmetry let’s say we put the temperature T, the pressure P and the humidity H of a room between two brackets: ⎛ ⎞ T ⎜ ⎟ ⎝ P ⎠ . -
The Chirality-Flow Method for Massive and Electroweak Amplitudes
LU-TP 20-41 July 2020 The Chirality-Flow Method for Massive and Electroweak Amplitudes Joakim Alnefjord Department of Astronomy and Theoretical Physics, Lund University Master thesis supervised by Malin Sj¨odahl,Christian Reuschle, and Andrew Lifson Abstract In this thesis I extend the chirality-flow method to the full standard model at tree-level by including massive particles and electroweak interactions. The chirality-flow method is a new diagrammatic method for calculating Feynman diagrams that is based on the spinor- helicity formalism, that before this thesis was written had been worked out for massless QED and QCD at tree-level. I summarize what is known about massive spinor-helicity calculations and use this as the basis for the extended diagrammatic interpretation for massive particles. I use the Lorentz structure of the electroweak vertices to rewrite them in the chirality-flow picture. Popul¨arvetenskaplig beskrivning Det finns m˚angav¨agaratt g˚ai jakten efter en b¨attre f¨orst˚aelsef¨orv˚armateriella v¨arlds minsta best˚andsdelar,elementarpartiklarna. Vi kan bygga kraftigare och mer exakta par- tikelacceleratorer och d¨armedf¨orb¨attraden experimentella delen av partikelfysiken. Vi kan ocks˚af¨ors¨oka hitta nya teorier om hur v¨arldenfungerar, n˚agotsom i praktiken ¨ar v¨aldigt komplicerat. Vi kan ist¨alletfokusera p˚asmartare s¨attatt g¨orautr¨akningarinom dagens teoretiska ramar, vilket ¨arvad den h¨ar uppsatsen handlar om. Inom partikelfysiken ¨arvi ofta intresserade av att r¨aknaut s˚akallade ¨overg˚angsamplituder. Dessa kan exempelvis liknas med en sannolikhet att ett visst tillst˚andav partiklar ska ¨overg˚atill ett annat tillst˚andav andra partiklar vid en kollision i partikelacceleratorer. -
Minimal Dark Matter Models with Radiative Neutrino Masses
Master’s thesis Minimal dark matter models with radiative neutrino masses From Lagrangians to observables Simon May 1st June 2018 Advisors: Prof. Dr. Michael Klasen, Dr. Karol Kovařík Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Contents 1. Introduction 5 2. Experimental and observational evidence 7 2.1. Dark matter . 7 2.2. Neutrino oscillations . 14 3. Gauge theories and the Standard Model of particle physics 19 3.1. Mathematical background . 19 3.1.1. Group and representation theory . 19 3.1.2. Tensors . 27 3.2. Representations of the Lorentz group . 31 3.2.1. Scalars: The (0, 0) representation . 35 1 1 3.2.2. Weyl spinors: The ( 2 , 0) and (0, 2 ) representations . 36 1 1 3.2.3. Dirac spinors: The ( 2 , 0) ⊕ (0, 2 ) representation . 38 3.2.4. Majorana spinors . 40 1 1 3.2.5. Lorentz vectors: The ( 2 , 2 ) representation . 41 3.2.6. Field representations . 42 3.3. Two-component Weyl spinor formalism and van der Waerden notation 44 3.3.1. Definition . 44 3.3.2. Correspondence to the Dirac bispinor formalism . 47 3.4. The Standard Model . 49 3.4.1. Definition of the theory . 52 3.4.2. The Lagrangian . 54 4. Component notation for representations of SU(2) 57 4.1. SU(2) doublets . 59 4.1.1. Basic conventions and transformation of doublets . 60 4.1.2. Dual doublets and scalar product . 61 4.1.3. Transformation of dual doublets . 62 4.1.4. Adjoint doublets . 63 4.1.5. The question of transpose and conjugate doublets . -
5 the Dirac Equation and Spinors
5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory. -
WEYL SPINORS and DIRAC's ELECTRON EQUATION C William O
WEYL SPINORS AND DIRAC’SELECTRON EQUATION c William O. Straub, PhD Pasadena, California March 17, 2005 I’ve been planning for some time now to provide a simplified write-up of Weyl’s seminal 1929 paper on gauge invariance. I’m still planning to do it, but since Weyl’s paper covers so much ground I thought I would first address a discovery that he made kind of in passing that (as far as I know) has nothing to do with gauge-invariant gravitation. It involves the mathematical objects known as spinors. Although Weyl did not invent spinors, I believe he was the first to explore them in the context of Dirac’srelativistic electron equation. However, without a doubt Weyl was the first person to investigate the consequences of zero mass in the Dirac equation and the implications this has on parity conservation. In doing so, Weyl unwittingly anticipated the existence of a particle that does not respect the preservation of parity, an unheard-of idea back in 1929 when parity conservation was a sacred cow. Following that, I will use this opportunity to derive the Dirac equation itself and talk a little about its role in particle spin. Those of you who have studied Dirac’s relativistic electron equation may know that the 4-component Dirac spinor is actually composed of two 2-component spinors that Weyl introduced to physics back in 1929. The Weyl spinors have unusual parity properties, and because of this Pauli was initially very critical of Weyl’sanalysis because it postulated massless fermions (neutrinos) that violated the then-cherished notion of parity conservation. -
The History of Neutrinos, 1930 − 1985
The History of Neutrinos, 1930 − 1985. What have we Learned About Neutrinos? What have we Learned Using Neutrinos? J. Steinberger Prepared for “25th International Conference On Neutrino Physics and Astrophysics”, Kyoto (Japan), June 2012 1 2 3 4 The detector of the experiment of Conversi, Pancini and Piccioni, 1946, 5 which showed that the mesotron is not the Yukawa particle. Detector with 80 Geiger counters. The muon decay spectrum is continuous. My thesis experiment, under Fermi, which showed that the muon decays into two neutral particles, plus the electron. Fermi, myself and others, in 1954, at a summer school in Varenna, lake Como, a few months before Fermi’s untimely disappearance. 6 Demonstration of the Neutrino In 1956 Cowan and Reines detected antineutrinos from a nuclear reactor, reacting with protons in liquid scintillator which also contained cadmium, observing the positron as well as the scattering of the neutron on cadmium. 7 The Electron and Muon Neutrinos are Different. 1. G. Feinberg, 1958. 2. B. Pontecorvo, 1959. 3. M. Schwartz (T.D. Lee), 1959 4. Higher energy accelerators, Courant, Livingston and Snyder. Pontecorvo 8 9 A C B D Spark chamber and counter arrangement. A are triggering counters, Energy spectra of neutrinos B, C and D are anticoincidence counters from pion and kaon decays. 10 Event with penetrating muon and hadron shower 11 The group of the 2nd neutrino experiment in 1962: J.S., Goulianos, Gaillard, Mistry, Danby, technician whose name I have forgotten, Lederman and Schwartz. 12 Same group, 26 years later, at Nobel ceremony in Stockholm. 13 Discovery of partons, nucleon structure, scaling, in deep inelastic scattering of electrons on protons at SLAC in 1969. -
Lecture Notes Introduction to Supersymmetry and Supergravity
Lecture notes Introduction to Supersymmetry and Supergravity Jan Louis Fachbereich Physik der Universit¨atHamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ABSTRACT These lectures give a basic introduction to supersymmetry and supergravity. Lecture course given at the University of Hamburg, winter term 2015/16 January 25, 2016 Contents 1 The Supersymmetry Algebra 4 1.1 Review of Poincare Algebra . .4 1.2 Representations of the Lorentz Group . .5 1.3 Supersymmetry Algebra . .6 2 Representations of the supersymmetry algebra and the Chiral Multi- plet 7 2.1 Massive representations . .7 2.2 Massless representations . .8 2.3 The chiral multiplet in QFTs . .8 3 Superspace and the Chiral Multiplet 11 3.1 Basic set-up . 11 3.2 Chiral Multiplet . 12 3.3 Berezin integration . 13 3.4 R-symmetry . 14 4 Super Yang-Mills Theories 15 4.1 The Vector Multiplet in Superspace . 15 4.2 Non-Abelian vector multiplets . 17 5 Super YM Theories coupled to matter and the MSSM 18 5.1 Coupling to matter . 18 5.2 The minimal supersymmetric Standard Model (MSSM) . 19 5.2.1 The Spectrum . 19 5.2.2 The Lagrangian . 20 6 Spontaneous Supersymmetry Breaking 22 6.1 Order parameters of supersymmetry breaking . 22 6.2 Models for spontaneous supersymmetry breaking . 22 6.2.1 F-term breaking . 23 6.2.2 D-term breaking . 23 6.3 General considerations . 24 6.3.1 Fermion mass matrix and Goldstone's theorem for supersymmetry 24 6.3.2 Mass sum rules and the supertrace . 25 1 7 Non-renormalizable couplings 27 7.1 Non-linear σ-models . -
Electrical Probes of the Non-Abelian Spin Liquid in Kitaev Materials
PHYSICAL REVIEW X 10, 031014 (2020) Electrical Probes of the Non-Abelian Spin Liquid in Kitaev Materials David Aasen,1,2 Roger S. K. Mong,3,4 Benjamin M. Hunt,5,4 David Mandrus ,6,7 and Jason Alicea 8,9 1Microsoft Quantum, Microsoft Station Q, University of California, Santa Barbara, California 93106-6105 USA 2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA 3Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA 4Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15260, USA 5Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 6Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA 7Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 8Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 9Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 5 March 2020; revised 12 May 2020; accepted 19 May 2020; published 17 July 2020) Recent thermal-conductivity measurements evidence a magnetic-field-induced non-Abelian spin-liquid phase in the Kitaev material α-RuCl3. Although the platform is a good Mott insulator, we propose experiments that electrically probe the spin liquid’s hallmark chiral Majorana edge state and bulk anyons, including their exotic exchange statistics. We specifically introduce circuits that exploit interfaces between electrically active systems and Kitaev materials to “perfectly” convert electrons from the former into emergent fermions in the latter—thereby enabling variations of transport probes invented for topological superconductors and fractional quantum-Hall states. -
Introduction to Supersymmetry
Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .