Highlight Talk from Super-Kamiokande †
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gran Sasso Underground Laboratory Program
The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab -
Radiochemical Solar Neutrino Experiments, "Successful and Otherwise"
BNL-81686-2008-CP Radiochemical Solar Neutrino Experiments, "Successful and Otherwise" R. L. Hahn Presented at the Proceedings of the Neutrino-2008 Conference Christchurch, New Zealand May 25 - 31, 2008 September 2008 Chemistry Department Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. -
In the Light of LSND, Miniboone and Other Data
DAPNIA-SPhT Joint Seminar, 21 May 2007 Exotic Neutrino Physics in the light of LSND, MiniBooNE and other data Marco Cirelli + Stéphane Lavignac SPhT - CEA/Saclay Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK CHOOZ erde 10–3 PaloV Super-K+SNO Cl +KamLAND ] 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND Simple theory: [eV 2 –6 SNO m 10 |ν! = cos θ|ν1! + sin θ|ν2! Super-K ∆ −E1t −E2t |ν(t)! = e cos θ|ν1! + e sin θ|ν2! Ga 2 Ei = p + mi /2p 2 –9 ν ↔ν m L 10 e X 2 2 ∆ ν ↔ν P ν → ν θ µ τ ( α β) = sin 2 αβ sin ν ↔ν E e -
Jongkuk Kim Neutrino Oscillations in Dark Matter
Neutrino Oscillations in Dark Matter Jongkuk Kim Based on PRD 99, 083018 (2019), Ki-Young Choi, JKK, Carsten Rott Based on arXiv: 1909.10478, Ki-Young Choi, Eung Jin Chun, JKK 2019. 10. 10 @ CERN, Swiss Contents Neutrino oscillation MSW effect Neutrino-DM interaction General formula Dark NSI effect Dark Matter Assisted Neutrino Oscillation New constraint on neutrino-DM scattering Conclusions 2 Standard MSW effect Consider neutrino/anti-neutrino propagation in a general background electron, positron Coherent forward scattering 3 Standard MSW effect Generalized matter potential Standard matter potential L. Wolfenstein, 1978 S. P. Mikheyev, A. Smirnov, 1985 D d Matter potential @ high energy d 4 General formulation Equation of motion in the momentum space : corrections R. F. Sawyer, 1999 P. Q. Hung, 2000 A. Berlin, 2016 In a Lorenz invariant medium: S. F. Ge, S. Parke, 2019 H. Davoudiasl, G. Mohlabeng, M. Sulliovan, 2019 G. D’Amico, T. Hamill, N. Kaloper, 2018 d F. Capozzi, I. Shoemaker, L. Vecchi 2018 Canonical basis of the kinetic term: 5 General formulation The Equation of Motion Correction to the neutrino mass matrix Original mass term is modified For large parameter space, the mass correction is subdominant 6 DM model Bosonic DM (ϕ) and fermionic messenger (푋푖) Lagrangian Coherent forward scattering 7 General formulation Ki-Young Choi, Eung Jin Chun, JKK Neutrino/ anti-neutrino Hamiltonian Corrections 8 Neutrino potential Ki-Young Choi, Eung Jin Chun, JKK Change of shape: Low Energy Limit: High Energy limit: 9 Two-flavor oscillation The effective Hamiltonian D The mixing angle & mass squared difference in the medium 10 Mass difference between ν&νҧ Ki-Young Choi, Eung Jin Chun, JKK I Bound: T. -
Status of the Opera Experiment∗
Vol. 37 (2006) ACTA PHYSICA POLONICA B No 7 STATUS OF THE OPERA EXPERIMENT ∗ R. Zimmermann on behalf of the OPERA Collaboration Institut für Experimentalphysik, Universität Hamburg D-22761 Hamburg, Germany (Received May 15, 2006) In this article the physics motivation and the detector design of the OPERA experiment will be reviewed. The construction status of the de- tector, which will be situated in the CNGS beam from CERN to the Gran Sasso laboratory, will be reported. A survey on the physics performance will be given and the physics plan in 2006 will be presented. PACS numbers: 14.60.Pq 1. Introduction The CNGS project is designed to search for the νµ ντ oscillation in the parameter region indicated by the SuperKamiokande,↔ Macro and Soudan2 atmospheric neutrino analysis [1–3]. The main goal is to find ντ appearance by direct detection of the τ from ντ CC interactions. One will also search for the subleading νµ νe oscillations, which could be observed if θ13 is close to the present limit↔ from CHOOZ [4] and PaloVerde [5]. In order to reach these goals a νµ beam will be sent from CERN to Gran Sasso. In the Gran Sasso laboratory, the OPERA experiment (CNGS1) is under construction. At the distance of L = 732 km between the CERN and the Gran Sasso laboratory the νµ flux of the beam is optimized to yield a maximum num- ber of CC ντ interactions at Gran Sasso. With a mean beam energy of E = 17 GeV the contamination with ν¯µ is around 2% and with νe (ν¯e) is less than 1%. -
A Survey of the Physics Related to Underground Labs
ANDES: A survey of the physics related to underground labs. Osvaldo Civitarese Dept.of Physics, University of La Plata and IFLP-CONICET ANDES/CLES working group ANDES: A survey of the physics related to underground labs. – p. 1 Plan of the talk The field in perspective The neutrino mass problem The two-neutrino and neutrino-less double beta decay Neutrino-nucleus scattering Constraints on the neutrino mass and WR mass from LHC-CMS and 0νββ Dark matter Supernovae neutrinos, matter formation Sterile neutrinos High energy neutrinos, GRB Decoherence Summary The field in perspective How the matter in the Universe was (is) formed ? What is the composition of Dark matter? Neutrino physics: violation of fundamental symmetries? The atomic nucleus as a laboratory: exploring physics at large scale. Neutrino oscillations Building neutrino flavor states from mass eigenstates νl = Uliνi i X Energy of the state m2c4 E ≈ pc + i i 2E Probability of survival/disappearance 2 ′ −i(Ei−Ep)t/h¯ ∗ P (νl → νl′ )= | δ(l, l )+ Ul′i(e − 1)Uli | 6 Xi=p 2 2 4 (mi −mp )c L provided 2Ehc¯ ≥ 1 Neutrino oscillations The existence of neutrino oscillations was demonstrated by experiments conducted at SNO and Kamioka. The Swedish Academy rewarded the findings with two Nobel Prices : Koshiba, Davis and Giacconi (2002) and Kajita and Mc Donald (2015) Some of the experiments which contributed (and still contribute) to the measurements of neutrino oscillation parameters are K2K, Double CHOOZ, Borexino, MINOS, T2K, Daya Bay. Like other underground labs ANDES will certainly be a good option for these large scale experiments. -
QUANTUM GRAVITY EFFECT on NEUTRINO OSCILLATION Jonathan Miller Universidad Tecnica Federico Santa Maria
QUANTUM GRAVITY EFFECT ON NEUTRINO OSCILLATION Jonathan Miller Universidad Tecnica Federico Santa Maria ARXIV 1305.4430 (Collaborator Roman Pasechnik) !1 INTRODUCTION Neutrinos are ideal probes of distant ‘laboratories’ as they interact only via the weak and gravitational forces. 3 of 4 forces can be described in QFT framework, 1 (Gravity) is missing (and exp. evidence is missing): semi-classical theory is the best understood 2 38 2 graviton interactions suppressed by (MPl ) ~10 GeV Many sources of astrophysical neutrinos (SNe, GRB, ..) Neutrino states during propagation are different from neutrino states during (weak) interactions !2 SEMI-CLASSICAL QUANTUM GRAVITY Class. Quantum Grav. 27 (2010) 145012 Considered in the limit where one mass is much greater than all other scales of the system. Considered in the long range limit. Up to loop level, semi-classical quantum gravity and effective quantum gravity are equivalent. Produced useful results (Hawking/etc). Tree level approximation. gˆµ⌫ = ⌘µ⌫ + hˆµ⌫ !3 CLASSICAL NEUTRINO OSCILLATION Neutrino Oscillation observed due to Interaction (weak) - Propagation (Inertia) - Interaction (weak) Neutrino oscillation depends both on production and detection hamiltonians. Neutrinos propagates as superposition of mass states. 2 2 2 mj mk ∆m L iEat ⌫f (t) >= Vfae− ⌫a > φjk = − L = | | 2E⌫ 4E⌫ a X 2 m m2 i j L i k L 2E⌫ 2E⌫ P⌫f ⌫ (E,L)= Vf 0jVf 0ke− e Vfj⇤ Vfk⇤ ! f0 j,k X !4 MATTER EFFECT neutrinos interact due to flavor (via W/Z) with particles (leptons, quarks) as flavor eigenstates MSW effect: neutrinos passing through matter change oscillation characteristics due to change in electroweak potential effects electron neutrino component of mass states only, due to electrons in normal matter neutrino may be in mass eigenstate after MSW effect: resonance Expectation of asymmetry for earth MSW effect in Solar neutrinos is ~3% for current experiments. -
THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement . -
Realization of the Low Background Neutrino Detector Double Chooz: from the Development of a High-Purity Liquid & Gas Handling Concept to first Neutrino Data
Realization of the low background neutrino detector Double Chooz: From the development of a high-purity liquid & gas handling concept to first neutrino data Dissertation of Patrick Pfahler TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Physik Department Lehrstuhl f¨urexperimentelle Astroteilchenphysik / E15 Univ.-Prof. Dr. Lothar Oberauer Realization of the low background neutrino detector Double Chooz: From the development of high-purity liquid- & gas handling concept to first neutrino data Dipl. Phys. (Univ.) Patrick Pfahler Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Universit¨atM¨unchen zur Erlangung des akademischen Grades eines Doktors des Naturwissenschaften (Dr. rer. nat) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Alejandro Ibarra Pr¨uferder Dissertation: 1. Univ.-Prof. Dr. Lothar Oberauer 2. Priv.-Doz. Dr. Andreas Ulrich Die Dissertation wurde am 3.12.2012 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 17.12.2012 angenommen. 2 Contents Contents i Introduction 1 I The Neutrino Disappearance Experiment Double Chooz 5 1 Neutrino Oscillation and Flavor Mixing 6 1.1 PMNS Matrix . 6 1.2 Flavor Mixing and Neutrino Oscillations . 7 1.2.1 Survival Probability of Reactor Neutrinos . 9 1.2.2 Neutrino Masses and Mass Hierarchy . 12 2 Reactor Neutrinos 14 2.1 Neutrino Production in Nuclear Power Cores . 14 2.2 Energy Spectrum of Reactor neutrinos . 15 2.3 Neutrino Flux Approximation . 16 3 The Double Chooz Experiment 19 3.1 The Double Chooz Collaboration . 19 3.2 Experimental Site: Commercial Nuclear Power Plant in Chooz . 20 3.3 Physics Program and Experimental Concept . 21 3.4 Signal . 23 3.4.1 The Inverse Beta Decay (IBD) . -
The History of Neutrinos, 1930 − 1985
The History of Neutrinos, 1930 − 1985. What have we Learned About Neutrinos? What have we Learned Using Neutrinos? J. Steinberger Prepared for “25th International Conference On Neutrino Physics and Astrophysics”, Kyoto (Japan), June 2012 1 2 3 4 The detector of the experiment of Conversi, Pancini and Piccioni, 1946, 5 which showed that the mesotron is not the Yukawa particle. Detector with 80 Geiger counters. The muon decay spectrum is continuous. My thesis experiment, under Fermi, which showed that the muon decays into two neutral particles, plus the electron. Fermi, myself and others, in 1954, at a summer school in Varenna, lake Como, a few months before Fermi’s untimely disappearance. 6 Demonstration of the Neutrino In 1956 Cowan and Reines detected antineutrinos from a nuclear reactor, reacting with protons in liquid scintillator which also contained cadmium, observing the positron as well as the scattering of the neutron on cadmium. 7 The Electron and Muon Neutrinos are Different. 1. G. Feinberg, 1958. 2. B. Pontecorvo, 1959. 3. M. Schwartz (T.D. Lee), 1959 4. Higher energy accelerators, Courant, Livingston and Snyder. Pontecorvo 8 9 A C B D Spark chamber and counter arrangement. A are triggering counters, Energy spectra of neutrinos B, C and D are anticoincidence counters from pion and kaon decays. 10 Event with penetrating muon and hadron shower 11 The group of the 2nd neutrino experiment in 1962: J.S., Goulianos, Gaillard, Mistry, Danby, technician whose name I have forgotten, Lederman and Schwartz. 12 Same group, 26 years later, at Nobel ceremony in Stockholm. 13 Discovery of partons, nucleon structure, scaling, in deep inelastic scattering of electrons on protons at SLAC in 1969. -
Results in Neutrino Oscillations from Super-Kamiokande I
Status of the RENO Reactor Neutrino Experiment RENO = Reactor Experiment for Neutrino Oscillation (For RENO Collaboration) K.K. Joo Chonnam National University February 15, 2011 Research Techniques Seminar @FNAL Outline Experiment Goals of the RENO Exp. - Short introduction - Expected q13 sensitivity - Systematic uncertainty Overview of the RENO Experiment - Experimental Setup of RENO - Schedule - Tunnel excavation - Status of detector construction - DAQ, data analysis tools Summary Brief History of Neutrinos 1930: Pauli postulated neutrino to explain b decay problem 1933: Fermi baptized the neutrino in his weak-interaction theory 1956: First discovery of neutrino by Reines & Cowan from reactor 1957: Neutrinos are left-handed by Glodhaber et al. 1962: Discovery of nm by Lederman et al. (Brookhaven Lab) 1974: Discovery of neutral currents due to neutrinos 1977: Tau lepton discovery by Perl et al. (SLAC) 1998: Atmospheric neutrino oscillation observed by Super-K 2000: nt discovery by DONUT (Fermilab) 2002: Solar neutrino oscillation observed by SNO and confirmed by Kamland What NEXT? Standard Model Neutrinos in SM Neutrino Oscillation . Three types of neutrinos exist & mixing among them Oscillation parameters (q12 , q23 , q13) Not measured yet . Elementary particles with almost no interactions . Almost massless: impossible to measure its mass Neutrino Mixing Parameters Matrix Components: νe Ue1 Ue2 Ue3 ν1 3 Angles (θ ; θ ; θ ) 12 13 23 ν U U U ν 1 CP phase (δ) μ μ1 μ2 μ3 2 2 Mass differences ντ Uτ1 Uτ2 Uτ3 ν3 1 0 0 c 0 s ei c s 0 13 13 12 12 U 0 c23 s23 0 1 0 s12 c12 0 i 0 s23 c23 s13e 0 c13 0 0 1 atmospheric SK, K2K The Next Big Thing? SNO, solar SK, KamLAND ≈ ≈ ° q23 qatm 45 q12 ≈qsol ≈ 32° Large and maximal mixing! Reduction of reactor neutrinos due to oscillations Disappearance Reactor neutrino disappearance Prob. -
Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis
Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis Miguel Escudero Abenza [email protected] arXiv:1810.00880, PRD 99, 035031 (2019) with: Gilly Elor & Ann Nelson Based on: arXiv:2101.XXXXX with: Gonzalo Alonso-Álvarez & Gilly Elor New Trends in Dark Matter 09-12-2020 The Universe Baryonic Matter 5% 26% Dark Matter 69% Dark Energy Planck 2018 1807.06209 Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !2 Theoretical Understanding? Motivating Question: What fraction of the Energy Density of the Universe comes from Physics Beyond the Standard Model? 99.85%! Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !3 SM Prediction: Neutrinos 40% 60% Photons Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !4 The Universe Baryonic Matter 5% 26% Dark Matter 69% Dark Energy Planck 2018 1807.06209 Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !5 Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis arXiv:1810.00880 Elor, Escudero & Nelson 1) Baryogenesis and Dark Matter are linked 2) Baryon asymmetry directly related to B-Meson observables 3) Leads to unique collider signatures 4) Fully testable at current collider experiments Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !6 Outline 1) B-Mesogenesis 1) C/CP violation 2) Out of equilibrium 3) Baryon number violation? 2) A Minimal Model & Cosmology 3) Implications for Collider Experiments 4) Dark Matter Phenomenology 5) Summary and Outlook Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !7 Baryogenesis