Radiochemical Solar Neutrino Experiments, "Successful and Otherwise"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gran Sasso Underground Laboratory Program
The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab -
Searching for Lightweight Dark Matter in Nova Near Detector
Searching for Lightweight Dark Matter in NOvA Near Detector PoS(FPCP2017)056 Filip Jediný* Czech Technical University in Prague Brehova 7, Prague, Czech Republic E-mail: [email protected] Athanasios Hatzikoutelis University of Tennessee Knoxville Knoxville, TN, USA E-mail: [email protected] Sergey Kotelnikov Fermi National Accelerator Laboratory Kirk and Pine st., Batavia, IL, USA E-mail: [email protected] Biao Wang Southern Methodist University Dallas, TX, USA E-mail: [email protected] The NOvA long-baseline neutrino oscillation experiment is receiving record numbers of 120GeV protons on target from Fermilab's NuMI neutrino beam. We take advantage of our experiment’s sophisticated particle identification algorithms to search for Lightweight Dark Matter (LDM) in the first year of data from the Near Detector of NOvA (300-ton low-Z mass, placed off the beam axis) during the experiment’s first physics runs. Theoretical models of LDM predict that bellow- 10GeV candidates produced in the NuMI target might scatter or decay in the NOvA Near Detector. We simulate an example of the Neutral Vector Portal model with the sensitivity estimate of 10-39 cm2, which corresponds to O(10) LDM candidates per three years of data, looking at single electromagnetic showers between 5 and 15 GeV in a model independent way. The 15th International Conference on Flavor Physics & CP Violation 5-9 June, 2017 Prague, Czech Republic * Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Searching for LDM in NOvA ND Filip Jediný 1. -
Astrophysical Neutrinos at the Low and High Energy Frontiers by Lili Yang A
Astrophysical neutrinos at the low and high energy frontiers by Lili Yang A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved November 2013 by the Graduate Supervisory Committee: Cecilia Lunardini, Chair Ricardo Alarcon Igor Shovkovy Francis Timmes Tanmay Vachaspati ARIZONA STATE UNIVERSITY December 2013 ABSTRACT For this project, the diffuse supernova neutrino background (DSNB) has been calcu- lated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse n¯ flux is 0.10 – 0.59 cm 2s 1 at 99% confi- e ⇠ − − dence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 2 1 cm− s− , above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming col- lapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, 1s. They could be identified by the time coin- ⇠ cidence of N 2 or N 3 events within 1s time window from nearby (4 – 5 Mpc) failed ≥ ≥ supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the back- ground on the resonant annihilation channel, is discussed. -
THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement . -
Measurement of Muon Neutrino Disappearance with the Nova Experiment Luke Vinton
Measurement of Muon Neutrino Disappearance with the NOvA Experiment Luke Vinton Submitted for the degree of Doctor of Philosophy University of Sussex 14th February 2018 Declaration I hereby declare that this thesis has not been and will not be submitted in whole or in part to another University for the award of any other degree. Signature: Luke Vinton iii UNIVERSITY OF SUSSEX Luke Vinton, Doctor of Philosophy Measurement of muon neutrino disappearance with the NOvA experiment Abstract The NOvA experiment consists of two functionally identical tracking calorimeter detectors which measure the neutrino energy and flavour composition of the NuMI beam at baselines of 1 km and 810 km. Measurements of neutrino oscillation parameters are extracted by comparing the neutrino energy spectrum in the far detector with predictions of the oscil- lated neutrino energy spectra that are made using information extracted from the near detector. Observation of muon neutrino disappearance allows NOvA to make measure- 2 ments of the mass squared splitting ∆m32 and the mixing angle θ23. The measurement of θ23 will provide insight into the make-up of the third mass eigenstate and probe the muon-tau symmetry hypothesis that requires θ23 = π=4. This thesis introduces three methods to improve the sensitivity of NOvA's muon neut- rino disappearance analysis. First, neutrino events are separated according to an estimate of their energy resolution to distinguish well resolved events from events that are not so well resolved. Second, an optimised neutrino energy binning is implemented that uses finer binning in the region of maximum muon neutrino disappearance. Third, a hybrid selection is introduced that selects muon neutrino events with greater efficiency and purity. -
Quiz 1 Feedback! Queries & Concerns Earth's Magnetic Field/Shield Quiz
Quiz 1 Feedback! Queries & Concerns • There is no protection on Earth from solar radiation. 1. What usually happens to energetic charged particles from the Sun when they approach the Earth? ! – Fortunately, this is not true! The Earths atmosphere absorbs high- energy electromagnetic radiation (such as X-rays from solar flares). !There is a continual flow of particles from the outer layers As for the energetic charged particles flowing from the Sun, the of the Sun, sometimes called the solar wind. We are Earths magnetic field provides a shield against them. Instead of protected from them by the Earths magnetic field, traveling straight through and hitting the Earth, they are redirected which deflects them away (changes their direction) so to travel along the field lines that bend around the Earth. that they dont hit the Earth head-on. Some of the particles – The ongoing, relatively thin flow of particles from the Sun is called travel along the field lines to the Earths magnetic poles, the solar wind. CMEs are rare, occasional events where a lot of where they collide with molecules in the atmosphere, mass is expelled in a short period of time. causing the Northern and Southern lights, the aurorae. – Some particles follow the field lines to the Earths magnetic poles; (Aside: The light is produced when electrons within the when they hit the upper atmosphere in the polar regions, they molecules are knocked up to higher energy states, and produce a glow we call the Northern/Southern Lights or aurorae. then fall back down, emitting photons of light.)! – Other particles are trapped in doughnut-shaped regions called the Van Allen belts. -
A Half-Century with Solar Neutrinos*
REVIEWS OF MODERN PHYSICS, VOLUME 75, JULY 2003 Nobel Lecture: A half-century with solar neutrinos* Raymond Davis, Jr. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA (Published 8 August 2003) Neutrinos are neutral, nearly massless particles that neutrino physics was a field that was wide open to ex- move at nearly the speed of light and easily pass through ploration: ‘‘Not everyone would be willing to say that he matter. Wolfgang Pauli (1945 Nobel Laureate in Physics) believes in the existence of the neutrino, but it is safe to postulated the existence of the neutrino in 1930 as a way say that there is hardly one of us who is not served by of carrying away missing energy, momentum, and spin in the neutrino hypothesis as an aid in thinking about the beta decay. In 1933, Enrico Fermi (1938 Nobel Laureate beta-decay hypothesis.’’ Neutrinos also turned out to be in Physics) named the neutrino (‘‘little neutral one’’ in suitable for applying my background in physical chemis- Italian) and incorporated it into his theory of beta decay. try. So, how lucky I was to land at Brookhaven, where I The Sun derives its energy from fusion reactions in was encouraged to do exactly what I wanted and get paid for it! Crane had quite an extensive discussion on which hydrogen is transformed into helium. Every time the use of recoil experiments to study neutrinos. I imme- four protons are turned into a helium nucleus, two neu- diately became interested in such experiments (Fig. -
The Search for 0Νββ Decay in 130Te with CUORE-0 by Jonathan Loren
The Search for 0νββ Decay in 130Te with CUORE-0 by Jonathan Loren Ouellet Ph.D. Thesis Department of Physics University of California, Berkeley Berkeley, Ca 94720 and Nuclear Science Division Ernest Orlando Lawrence National Laboratory Berkeley, Ca 94720 Spring 2015 This material is based upon work supported by the US Department of Energy (DOE) Office of Science under Contract No. DE-AC02-05CH11231 and by the National Science Foundation under Grant Nos. NSF-PHY-0902171 and NSF-PHY-1314881. DISCLAIMER This document was prepared as an account of work sponsored by the United States Gov- ernment. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. The Search for 0νββ Decay in 130Te with CUORE-0 by Jonathan Loren Ouellet A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Yury Kolomensky, Chair Professor Gabriel Orebi Gann Professor Eric B. -
Resolving the Solar Neutrino Problem
FEATURES Resolving the solar neutrino problem: Evidence for massive neutrinos in the Sudbury Neutrino Observatory Karsten M. Heeger for the SNO collaboration ............................................................................................................................................................................................................................................................ The solar neutrino problem are not features of the Standard Model of particle physics. In or more than 30 years, experiments have detected neutrinos quantum mechanics, an initially pure flavor (e.g. electron) can Pproduced in the thermonuclear fusion reactions which power change as neutrinos propagate because the mass components that the Sun. These reactions fuse protons into helium and release neu made up that pure flavor get out of phase. The probability for trinos with an energy of up to 15 MeY. Data from these solar neutrino oscillations to occurmayeven be enhanced in the Sun in neutrino experiments were found to be incompatible with the an energy-dependent and resonant manner as neutrinos emerge predictions of solar models. More precisely, the flux ofneutrinos from the dense core of the Sun. This effect of matter-enhanced detected on Earthwas less than expected, and the relative intensi neutrino oscillations was suggested by Mikheyev, Smirnov, and ties ofthe sources ofneutrinos in the sun was incompatible with Wolfenstein (MSW) and is one of the most promising explana those predicted bysolar models. By the mid-1990's the data -
Helioseismology, Solar Models and Solar Neutrinos
Helioseismology, solar models and solar neutrinos G. Fiorentini Dipartimento di Fisica, Universit´adi Ferrara and INFN-Ferrara Via Paradiso 12, I-44100 Ferrara, Italy E-mail: fi[email protected] and B. Ricci Dipartimento di Fisica, Universit´adi Ferrara and INFN-Ferrara Via Paradiso 12, I-44100 Ferrara, Italy E-mail: [email protected] ABSTRACT We review recent advances concerning helioseismology, solar models and solar neutrinos. Particularly we shall address the following points: i) helioseismic tests of recent SSMs; ii)the accuracy of the helioseismic determination of the sound speed near the solar center; iii)predictions of neutrino fluxes based on helioseismology, (almost) independent of SSMs; iv)helioseismic tests of exotic solar models. 1. Introduction Without any doubt, in the last few years helioseismology has changed the per- spective of standard solar models (SSM). Before the advent of helioseismic data a solar model had essentially three free parameters (initial helium and metal abundances, Yin and Zin, and the mixing length coefficient α) and produced three numbers that could be directly measured: the present radius, luminosity and heavy element content of the photosphere. In itself this was not a big accomplishment and confidence in the SSMs actually relied on the success of the stellar evoulution theory in describing many and more complex evolutionary phases in good agreement with observational data. arXiv:astro-ph/9905341v1 26 May 1999 Helioseismology has added important data on the solar structure which provide se- vere constraint and tests of SSM calculations. For instance, helioseismology accurately determines the depth of the convective zone Rb, the sound speed at the transition radius between the convective and radiative transfer cb, as well as the photospheric helium abundance Yph. -
An Introduction to Solar Neutrino Research
AN INTRODUCTION TO SOLAR NEUTRINO RESEARCH John Bahcall Institute for Advanced Study, Princeton, NJ 08540 ABSTRACT In the ¯rst lecture, I describe the conflicts between the combined standard model predictions and the results of solar neutrino experi- ments. Here `combined standard model' means the minimal standard electroweak model plus a standard solar model. First, I show how the comparison between standard model predictions and the observed rates in the four pioneering experiments leads to three di®erent solar neutrino problems. Next, I summarize the stunning agreement be- tween the predictions of standard solar models and helioseismological measurements; this precise agreement suggests that future re¯nements of solar model physics are unlikely to a®ect signi¯cantly the three solar neutrino problems. Then, I describe the important recent analyses in which the neutrino fluxes are treated as free parameters, independent of any constraints from solar models. The disagreement that exists even without using any solar model constraints further reinforces the view that new physics may be required. The principal conclusion of the ¯rst lecture is that the minimal standard model is not consistent with the experimental results that have been reported for the pioneering solar neutrino experiments. In the second lecture, I discuss the possibilities for detecting \smok- ing gun" indications of departures from minimal standard electroweak theory. Examples of smoking guns are the distortion of the energy spectrum of recoil electrons produced by neutrino interactions, the de- pendence of the observed counting rate on the zenith angle of the sun (or, equivalently, the path through the earth to the detector), the ratio of the flux of neutrinos of all types to the flux of electron neutrinos 1 (neutral current to charged current ratio), and seasonal variations of the event rates (dependence upon the earth-sun distance). -
Neutrino Book
The challenge of neutrinos Preparing the Gargamelle bubble chamber at CERN in 1969. In 1973 the chamber took the first historic photographs of neutral current interactions. (Photo CERN 409.9.69) Neutrino book Gargamelle and Neutral Currents - The Story of a Vital Discovery by Andre Rousset Andre Rousset's book (in French - Gargamelle et les Courants Neutres - Ecole des Mines de Paris) tells the story of Gargamelle and the discov ery at CERN in 1973 of neutral currents, the cornerstone of the electroweak theory. This vital discov ery helped to give credence to the Standard Model of particle physics. Rousset is both an observer and one of the key figures in the story. His book is lively and well docu mented; in it he uses archive material to ensure the accuracy of his infor mation on dates, choices and deci sions. ously" to the project was probably in an interesting manner the theo After an introduction to particle what swung the decision. rists' "green light", giving the go- physics which puts into perspective Construction took five years, during ahead to the experimentalists. In fact, the electroweak theory unifying weak which many problems were encoun the European collaboration (Aachen, and electromagnetic interactions, tered, right up to the fault in the main Brussels, CERN, Ecole Polytechni Rousset comes straight to the point. part of the chamber which caused que, Milan, Orsay, UC London) was From the late 1950s onwards he was delays and, a few years later, was to divided between a study of the quark- involved in the construction of the prove fatal to the detector.