Atomic Electric Dipole Moments and Cp Violation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetry and Gravity
universe Article Making a Quantum Universe: Symmetry and Gravity Houri Ziaeepour 1,2 1 Institut UTINAM, CNRS UMR 6213, Observatoire de Besançon, Université de Franche Compté, 41 bis ave. de l’Observatoire, BP 1615, 25010 Besançon, France; [email protected] or [email protected] 2 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking GU5 6NT, UK Received: 05 September 2020; Accepted: 17 October 2020; Published: 23 October 2020 Abstract: So far, none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here, we outline the preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on three well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by two angular variables. We show that, in the absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference—observer—and another as clock, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. -
Consequences of Kaluza-Klein Covariance
CONSEQUENCES OF KALUZA-KLEIN COVARIANCE Paul S. Wesson Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada Space-Time-Matter Consortium, http://astro.uwaterloo.ca/~wesson PACs: 11.10Kk, 11.25Mj, 0.45-h, 04.20Cv, 98.80Es Key Words: Classical Mechanics, Quantum Mechanics, Gravity, Relativity, Higher Di- mensions Addresses: Mail to Waterloo above; email: [email protected] Abstract The group of coordinate transformations for 5D noncompact Kaluza-Klein theory is broader than the 4D group for Einstein’s general relativity. Therefore, a 4D quantity can take on different forms depending on the choice for the 5D coordinates. We illustrate this by deriving the physical consequences for several forms of the canonical metric, where the fifth coordinate is altered by a translation, an inversion and a change from spacelike to timelike. These cause, respectively, the 4D cosmological ‘constant’ to be- come dependent on the fifth coordinate, the rest mass of a test particle to become measured by its Compton wavelength, and the dynamics to become wave-mechanical with a small mass quantum. These consequences of 5D covariance – whether viewed as positive or negative – help to determine the viability of current attempts to unify gravity with the interactions of particles. 1. Introduction Covariance, or the ability to change coordinates while not affecting the validity of the equations, is an essential property of any modern field theory. It is one of the found- ing principles for Einstein’s theory of gravitation, general relativity. However, that theory is four-dimensional, whereas many theories which seek to unify gravitation with the interactions of particles use higher-dimensional spaces. -
Report of the Supersymmetry Theory Subgroup
Report of the Supersymmetry Theory Subgroup J. Amundson (Wisconsin), G. Anderson (FNAL), H. Baer (FSU), J. Bagger (Johns Hopkins), R.M. Barnett (LBNL), C.H. Chen (UC Davis), G. Cleaver (OSU), B. Dobrescu (BU), M. Drees (Wisconsin), J.F. Gunion (UC Davis), G.L. Kane (Michigan), B. Kayser (NSF), C. Kolda (IAS), J. Lykken (FNAL), S.P. Martin (Michigan), T. Moroi (LBNL), S. Mrenna (Argonne), M. Nojiri (KEK), D. Pierce (SLAC), X. Tata (Hawaii), S. Thomas (SLAC), J.D. Wells (SLAC), B. Wright (North Carolina), Y. Yamada (Wisconsin) ABSTRACT Spacetime supersymmetry appears to be a fundamental in- gredient of superstring theory. We provide a mini-guide to some of the possible manifesta- tions of weak-scale supersymmetry. For each of six scenarios These motivations say nothing about the scale at which nature we provide might be supersymmetric. Indeed, there are additional motiva- tions for weak-scale supersymmetry. a brief description of the theoretical underpinnings, Incorporation of supersymmetry into the SM leads to a so- the adjustable parameters, lution of the gauge hierarchy problem. Namely, quadratic divergences in loop corrections to the Higgs boson mass a qualitative description of the associated phenomenology at future colliders, will cancel between fermionic and bosonic loops. This mechanism works only if the superpartner particle masses comments on how to simulate each scenario with existing are roughly of order or less than the weak scale. event generators. There exists an experimental hint: the three gauge cou- plings can unify at the Grand Uni®cation scale if there ex- I. INTRODUCTION ist weak-scale supersymmetric particles, with a desert be- The Standard Model (SM) is a theory of spin- 1 matter tween the weak scale and the GUT scale. -
Naturalness and New Approaches to the Hierarchy Problem
Naturalness and New Approaches to the Hierarchy Problem PiTP 2017 Nathaniel Craig Department of Physics, University of California, Santa Barbara, CA 93106 No warranty expressed or implied. This will eventually grow into a more polished public document, so please don't disseminate beyond the PiTP community, but please do enjoy. Suggestions, clarifications, and comments are welcome. Contents 1 Introduction 2 1.0.1 The proton mass . .3 1.0.2 Flavor hierarchies . .4 2 The Electroweak Hierarchy Problem 5 2.1 A toy model . .8 2.2 The naturalness strategy . 13 3 Old Hierarchy Solutions 16 3.1 Lowered cutoff . 16 3.2 Symmetries . 17 3.2.1 Supersymmetry . 17 3.2.2 Global symmetry . 22 3.3 Vacuum selection . 26 4 New Hierarchy Solutions 28 4.1 Twin Higgs / Neutral naturalness . 28 4.2 Relaxion . 31 4.2.1 QCD/QCD0 Relaxion . 31 4.2.2 Interactive Relaxion . 37 4.3 NNaturalness . 39 5 Rampant Speculation 42 5.1 UV/IR mixing . 42 6 Conclusion 45 1 1 Introduction What are the natural sizes of parameters in a quantum field theory? The original notion is the result of an aggregation of different ideas, starting with Dirac's Large Numbers Hypothesis (\Any two of the very large dimensionless numbers occurring in Nature are connected by a simple mathematical relation, in which the coefficients are of the order of magnitude unity" [1]), which was not quantum in nature, to Gell- Mann's Totalitarian Principle (\Anything that is not compulsory is forbidden." [2]), to refinements by Wilson and 't Hooft in more modern language. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Permalink https://escholarship.org/uc/item/2sv8b4x5 Author Mcgehee Jr., Robert Stephen Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Hitoshi Murayama, Chair Professor Alexander Givental Professor Yasunori Nomura Summer 2020 Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It Copyright 2020 by Robert Stephen Mcgehee Jr. 1 Abstract Discoverable Matter: an Optimist’s View of Dark Matter and How to Find It by Robert Stephen Mcgehee Jr. Doctor of Philosophy in Physics University of California, Berkeley Professor Hitoshi Murayama, Chair An abundance of evidence from diverse cosmological times and scales demonstrates that 85% of the matter in the Universe is comprised of nonluminous, non-baryonic dark matter. Discovering its fundamental nature has become one of the greatest outstanding problems in modern science. Other persistent problems in physics have lingered for decades, among them the electroweak hierarchy and origin of the baryon asymmetry. Little is known about the solutions to these problems except that they must lie beyond the Standard Model. The first half of this dissertation explores dark matter models motivated by their solution to not only the dark matter conundrum but other issues such as electroweak naturalness and baryon asymmetry. -
Solving the Hierarchy Problem
solving the hierarchy problem Joseph Lykken Fermilab/U. Chicago puzzle of the day: why is gravity so weak? answer: because there are large or warped extra dimensions about to be discovered at colliders puzzle of the day: why is gravity so weak? real answer: don’t know many possibilities may not even be a well-posed question outline of this lecture • what is the hierarchy problem of the Standard Model • is it really a problem? • what are the ways to solve it? • how is this related to gravity? what is the hierarchy problem of the Standard Model? • discuss concepts of naturalness and UV sensitivity in field theory • discuss Higgs naturalness problem in SM • discuss extra assumptions that lead to the hierarchy problem of SM UV sensitivity • Ken Wilson taught us how to think about field theory: “UV completion” = high energy effective field theory matching scale, Λ low energy effective field theory, e.g. SM energy UV sensitivity • how much do physical parameters of the low energy theory depend on details of the UV matching (i.e. short distance physics)? • if you know both the low and high energy theories, can answer this question precisely • if you don’t know the high energy theory, use a crude estimate: how much do the low energy observables change if, e.g. you let Λ → 2 Λ ? degrees of UV sensitivity parameter UV sensitivity “finite” quantities none -- UV insensitive dimensionless couplings logarithmic -- UV insensitive e.g. gauge or Yukawa couplings dimension-full coefs of higher dimension inverse power of cutoff -- “irrelevant” operators e.g. -
Supersymmetry Breaking and Inflation from Higher Curvature
Prepared for submission to JHEP Supersymmetry Breaking and Inflation from Higher Curvature Supergravity I. Dalianisa, F. Farakosb, A. Kehagiasa;c, A. Riottoc and R. von Ungeb aPhysics Division, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece bInstitute for Theoretical Physics, Masaryk University, 611 37 Brno, Czech Republic cDepartment of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: The generic embedding of the R + R2 higher curvature theory into old- minimal supergravity leads to models with rich vacuum structure in addition to its well-known inflationary properties. When the model enjoys an exact R-symmetry, there is an inflationary phase with a single supersymmetric Minkowski vacuum. This appears to be a special case of a more generic set-up, which in principle may include R- symmetry violating terms which are still of pure supergravity origin. By including the latter terms, we find new supersymmetry breaking vacua compatible with single-field inflationary trajectories. We discuss explicitly two such models and we illustrate how arXiv:1409.8299v2 [hep-th] 22 Jan 2015 the inflaton is driven towards the supersymmetry breaking vacuum after the inflationary phase. In these models the gravitino mass is of the same order as the inflaton mass. Therefore, pure higher curvature supergravity may not only accommodate the proper inflaton field, but it may also provide the appropriate hidden sector for supersymmetry breaking after inflation has ended. -
TASI 2008 Lectures: Introduction to Supersymmetry And
TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg -
Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis
Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis Miguel Escudero Abenza [email protected] arXiv:1810.00880, PRD 99, 035031 (2019) with: Gilly Elor & Ann Nelson Based on: arXiv:2101.XXXXX with: Gonzalo Alonso-Álvarez & Gilly Elor New Trends in Dark Matter 09-12-2020 The Universe Baryonic Matter 5% 26% Dark Matter 69% Dark Energy Planck 2018 1807.06209 Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !2 Theoretical Understanding? Motivating Question: What fraction of the Energy Density of the Universe comes from Physics Beyond the Standard Model? 99.85%! Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !3 SM Prediction: Neutrinos 40% 60% Photons Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !4 The Universe Baryonic Matter 5% 26% Dark Matter 69% Dark Energy Planck 2018 1807.06209 Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !5 Baryogenesis and Dark Matter from B Mesons: B-Mesogenesis arXiv:1810.00880 Elor, Escudero & Nelson 1) Baryogenesis and Dark Matter are linked 2) Baryon asymmetry directly related to B-Meson observables 3) Leads to unique collider signatures 4) Fully testable at current collider experiments Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !6 Outline 1) B-Mesogenesis 1) C/CP violation 2) Out of equilibrium 3) Baryon number violation? 2) A Minimal Model & Cosmology 3) Implications for Collider Experiments 4) Dark Matter Phenomenology 5) Summary and Outlook Miguel Escudero (TUM) B-Mesogenesis New Trends in DM 09-12-20 !7 Baryogenesis -
What Is Not the Hierarchy Problem (Of the SM Higgs)
What is not the hierarchy problem (of the SM Higgs) Matěj Hudec Výjezdní seminář ÚČJF Malá Skála, 12 Apr 2019, lunchtime Our ecological footprint he FuFnu wni twhit th the ggs AbAebliealina nH iHiggs mmodoedlel ký MM. M. Maalinlinsský 5 (2013) EEPPJJCC 7 733, ,2 244115 (2013) 660 aarrXXiivv::11221122..44660 12 pgs. 2 Our ecological footprint the Aspects of FuFnu wni twhith the Aspects of ggs renormalization AbAebliealina nH iHiggs renormalization of spontaneously mmodoedlel of spontaneously broken gauge broken gauge theories theories ký MM. M. Maalinlinsský MASTER THESIS MASTER THESIS M. H. M. H. 5 (2013) supervised by M.M. EEPPJJCC 7 733, ,2 244115 (2013) supervised by M.M. iv:1212.4660 2016 aarrXXiv:1212.4660 2016 12 pgs. 56 pgs. 3 Our ecological footprint Aspects of Fun with the H Fun with the Aspects of ierarchy and n Higgs renormalization AbAebliealian Higgs renormalization dHecoup of spontaneously ierarclhing mmodoedlel of spontaneously y and broken gauge decoup broken gauge ling theories theories M. Hudec, M. Malinský M M. Malinský MASTER THESIS .M M. alinský MASTER THESIS Hudec, M. M M. H. alinský M. H. (hopeful 5 (2013) supervised by M.M. ly EPJC) EEPPJJCC 7 733, ,2 244115 (2013) supervised by M.M. arX (hopef iv:190u2lly. 0EPJ 12.4660 2016 4C4) 70 aarrXXiivv::112212.4660 a 2016 rXiv:190 2.04470 12 pgs. 56 pgs. 17 pgs. 4 Hierarchy problem – first thoughts 5 Hierarchy problem – first thoughts In particle physics, the hierarchy problem is the large discrepancy between aspects of the weak force and gravity. 6 Hierarchy problem – first thoughts In particle physics, the hierarchy problem is the large discrepancy between aspects of the weak force and gravity. -
Peering Into the Universe and Its Ele Mentary
A gigantic detector to explore elementary particle unification theories and the mysteries of the Universe’s evolution Peering into the Universe and its ele mentary particles from underground Ultrasensitive Photodetectors The planned Hyper-Kamiokande detector will consist of an Unified Theory and explain the evolution of the Universe order of magnitude larger tank than the predecessor, Super- through the investigation of proton decay, CP violation (the We have been developing the world’s largest photosensors, which exhibit a photodetection Kamiokande, and will be equipped with ultra high sensitivity difference between neutrinos and antineutrinos), and the efficiency two times greater than that of the photosensors. The Hyper-Kamiokande detector is both a observation of neutrinos from supernova explosions. The Super-Kamiokande photosensors. These new “microscope,” used to observe elementary particles, and a Hyper-Kamiokande experiment is an international research photosensors are able to perform light intensity “telescope”, used to study the Sun and supernovas through project aiming to become operational in the second half of and timing measurements with a much higher neutrinos. Hyper-Kamiokande aims to elucidate the Grand the 2020s. precision. The new Large-Aperture High-Sensitivity Hybrid Photodetector (left), the new Large-Aperture High-Sensitivity Photomultiplier Tube (right). The bottom photographs show the electron multiplication component. A megaton water tank The huge Hyper-Kamiokande tank will be used in order to obtain in only 10 years an amount of data corresponding to 100 years of data collection time using Super-Kamiokande. This Experimental Technique allows the observation of previously unrevealed The photosensors on the tank wall detect the very weak Cherenkov rare phenomena and small values of CP light emitted along its direction of travel by a charged particle violation. -
CP Violation Beyond the Standard Model*
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl. Part. Phys. 28 (2002) 345–358 PII: S0954-3899(02)30104-X CP violation beyond the standard model* GLKane1 and D D Doyle2 1 Randall Physics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA 2 CPES, University of Sussex, Falmer, Brighton BN1 9QJ, UK E-mail: [email protected] Received 25 October 2001 Published 21 January 2002 Online at stacks.iop.org/JPhysG/28/345 Abstract In this paper a number of broad issues are raised about the origins of CP violation and how to test the ideas. 1. Introduction The fundamental sources of CP violation in theories of physics beyond the standard model is an important issue which has not been sufficiently studied. In this paper, we begin by discussing the possible origins of CP violation in string theory and the potential influence of its phenomenology on string theory. This naturally develops into a consideration of supersymmetry breaking, specifically the soft-breaking supersymmetric Lagrangian, Lsoft. There exist two extreme scenarios which may realistically accommodate CP violation; the first involves small soft phases and a large CKM phase, δCKM, whereas the second contains large soft phases and small δCKM. We argue that there is reasonable motivation for δCKM to be almost zero and that the latter scenario should be taken seriously. Consequently, it is appropriate to consider what CP violating mechanisms could allow for large soft phases, and hence measurements of these soft phases (which can be deduced from collider results, mixings and decays, experiments exploring the Higgs sector or from electric dipole moment values) provide some interesting phenomenological implications for physics beyond the standard model.