Realization of the Low Background Neutrino Detector Double Chooz: from the Development of a High-Purity Liquid & Gas Handling Concept to first Neutrino Data

Total Page:16

File Type:pdf, Size:1020Kb

Realization of the Low Background Neutrino Detector Double Chooz: from the Development of a High-Purity Liquid & Gas Handling Concept to first Neutrino Data Realization of the low background neutrino detector Double Chooz: From the development of a high-purity liquid & gas handling concept to first neutrino data Dissertation of Patrick Pfahler TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Physik Department Lehrstuhl f¨urexperimentelle Astroteilchenphysik / E15 Univ.-Prof. Dr. Lothar Oberauer Realization of the low background neutrino detector Double Chooz: From the development of high-purity liquid- & gas handling concept to first neutrino data Dipl. Phys. (Univ.) Patrick Pfahler Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Universit¨atM¨unchen zur Erlangung des akademischen Grades eines Doktors des Naturwissenschaften (Dr. rer. nat) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Alejandro Ibarra Pr¨uferder Dissertation: 1. Univ.-Prof. Dr. Lothar Oberauer 2. Priv.-Doz. Dr. Andreas Ulrich Die Dissertation wurde am 3.12.2012 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 17.12.2012 angenommen. 2 Contents Contents i Introduction 1 I The Neutrino Disappearance Experiment Double Chooz 5 1 Neutrino Oscillation and Flavor Mixing 6 1.1 PMNS Matrix . 6 1.2 Flavor Mixing and Neutrino Oscillations . 7 1.2.1 Survival Probability of Reactor Neutrinos . 9 1.2.2 Neutrino Masses and Mass Hierarchy . 12 2 Reactor Neutrinos 14 2.1 Neutrino Production in Nuclear Power Cores . 14 2.2 Energy Spectrum of Reactor neutrinos . 15 2.3 Neutrino Flux Approximation . 16 3 The Double Chooz Experiment 19 3.1 The Double Chooz Collaboration . 19 3.2 Experimental Site: Commercial Nuclear Power Plant in Chooz . 20 3.3 Physics Program and Experimental Concept . 21 3.4 Signal . 23 3.4.1 The Inverse Beta Decay (IBD) . 23 3.4.2 Signature of the IBD . 24 3.4.3 Expected Signal . 27 3.5 Detector Design . 29 3.5.1 Neutrino Target (NT) . 29 3.5.2 Gamma Catcher (GC) . 30 3.5.3 Buffer (BF) . 31 3.5.4 Inner Muon Veto (IV) . 31 3.5.5 Passive Steel Shielding . 31 3.5.6 Outer Muon Veto (OV) . 31 3.5.7 Detector Liquids . 32 3.5.8 Detector Readout System . 32 3.5.9 Detector Calibration System . 33 3.6 Background . 35 3.6.1 Accidental Background . 35 3.6.2 Correlated Background . 36 3.6.3 Artificial Background . 36 3.7 Neutrino Selection . 37 i CONTENTS 3.7.1 Pre-Selection Cuts for the Neutrino Search . 37 3.7.2 Neutrino Selection Cuts . 37 II Development and Production of two Detector Liquids 39 4 Hardware Installations for Detector Liquid Production 41 4.1 Liquid Storage Area (LSA) . 42 4.2 Liquid Handling System . 43 4.2.1 Pumping Stations . 46 4.2.2 Storage Tanks for Buffer and Muon Veto . 50 4.2.3 Monitoring- and Safety-Systems . 53 4.3 Gas Handling System . 56 4.3.1 Liquid Nitrogen Plant and Gas Filter Station . 58 4.3.2 High Pressure Nitrogen . 59 4.3.3 Low Pressure Nitrogen . 60 4.3.4 Low Pressure Ventilation . 60 4.4 Trunk Line System (TLS) . 61 5 Material Selection for the Detector Liquid Production 64 5.1 Organic Liquid Scintillators and Requirements for Double Chooz . 64 5.1.1 Scintillating Mechanism and Stokes Shift . 64 5.1.2 Requirements for Double Chooz . 68 5.2 Component Selection for the Muon Veto Scintillator . 69 5.2.1 Scintillating Solvent . 69 5.2.2 Non-scintillating Dilution . 71 5.2.3 Wavelength Shifter . 73 5.3 Component Selection for the Buffer Liquid . 75 5.3.1 Non-scintillating Mineral Oils . 75 5.4 Selected Components for Muon Veto Scintillator and Buffer Liquid . 77 6 Detector Liquid Production 78 6.1 Composition of Muon Veto and Buffer . 78 6.2 Preparation of the LSA . 78 6.3 Parallel Production of the Muon Veto Scintillator and Buffer Liquid . 79 6.3.1 Master Solution . 79 6.3.2 Mixing Process . 80 III Filling and Handling of the Double Chooz Far Detector 83 7 Hardware Installations for the Filling and Handling of the DC far Detector 84 7.1 Liquid Handling System . 85 7.1.1 Detector Fluid Operating System (DFOS) . 85 7.1.2 DFOS Main Operation Modes . 93 7.1.3 Expansion Tank Operating System (XTOS) . 94 7.2 Gas Handling System . 98 7.2.1 Nitrogen Supply System . 99 7.2.2 Consumers . 104 7.2.3 Ventilation System . 106 7.3 Detector Monitoring System (DMS) . 112 7.3.1 Liquid Level Monitoring Systems . 112 7.3.2 Gas Pressure Monitoring System (GPM) . 124 ii CONTENTS 8 Detector Filling 127 8.1 Preparations for Filling . 128 8.1.1 Filling Team . 128 8.1.2 Detector Flushing . 128 8.1.3 DFOS Cleaning . 129 8.2 Detector Filling . 129 8.2.1 Filling Sequence . 132 IV Performance and Results 147 9 Quality of the Produced Detector Liquids 148 9.1 Muon Veto Scintillator . 149 9.1.1 Transparency, Light Yield and Density . 149 9.1.2 Radio Purity . 151 9.2 Buffer Liquid . 151 9.2.1 Transparency, Light Yield and Density . 151 9.2.2 Radio Purity . 153 9.3 Performance of the Liquid- and Gas Handling Systems in the LSA . 153 10 Accuracy and Performance of Detector Filling and Handling 156 10.1 Detector Filling Process . 156 10.1.1 Performance of the Filling Systems . 157 10.2 Detector Handling . 162 10.2.1 Performance of XTOS . 162 10.2.2 Performance of the Gas Handling System . 165 11 Detector Performance & Results from 2012 168 11.1 Cosmogenic Muons in the Inner Muon Veto . 169 11.2 Cosmogenic Muons in the Inner Detector . 170 11.3 First Neutrino Data . 177 11.4 First Result for Θ13 .....................................180 Summary & Outlook 183 11.5 Detector Liquid Production . 186 11.6 Liquid Transfer from the Surface to the Underground Laboratory . 187 11.7 Filling of the Double Chooz Far Detector . 188 11.8 Detector Handling During Data Taking . 190 11.9 Conclusion and Outlook . 191 V Appendix 193 A Double Chooz Experiment 194 A.1 Detector Design . 194 B Surface Installations 197 B.1 Liquid Storage Area . ..
Recommended publications
  • In the Light of LSND, Miniboone and Other Data
    DAPNIA-SPhT Joint Seminar, 21 May 2007 Exotic Neutrino Physics in the light of LSND, MiniBooNE and other data Marco Cirelli + Stéphane Lavignac SPhT - CEA/Saclay Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK CHOOZ erde 10–3 PaloV Super-K+SNO Cl +KamLAND ] 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND Simple theory: [eV 2 –6 SNO m 10 |ν! = cos θ|ν1! + sin θ|ν2! Super-K ∆ −E1t −E2t |ν(t)! = e cos θ|ν1! + e sin θ|ν2! Ga 2 Ei = p + mi /2p 2 –9 ν ↔ν m L 10 e X 2 2 ∆ ν ↔ν P ν → ν θ µ τ ( α β) = sin 2 αβ sin ν ↔ν E e
    [Show full text]
  • A Survey of the Physics Related to Underground Labs
    ANDES: A survey of the physics related to underground labs. Osvaldo Civitarese Dept.of Physics, University of La Plata and IFLP-CONICET ANDES/CLES working group ANDES: A survey of the physics related to underground labs. – p. 1 Plan of the talk The field in perspective The neutrino mass problem The two-neutrino and neutrino-less double beta decay Neutrino-nucleus scattering Constraints on the neutrino mass and WR mass from LHC-CMS and 0νββ Dark matter Supernovae neutrinos, matter formation Sterile neutrinos High energy neutrinos, GRB Decoherence Summary The field in perspective How the matter in the Universe was (is) formed ? What is the composition of Dark matter? Neutrino physics: violation of fundamental symmetries? The atomic nucleus as a laboratory: exploring physics at large scale. Neutrino oscillations Building neutrino flavor states from mass eigenstates νl = Uliνi i X Energy of the state m2c4 E ≈ pc + i i 2E Probability of survival/disappearance 2 ′ −i(Ei−Ep)t/h¯ ∗ P (νl → νl′ )= | δ(l, l )+ Ul′i(e − 1)Uli | 6 Xi=p 2 2 4 (mi −mp )c L provided 2Ehc¯ ≥ 1 Neutrino oscillations The existence of neutrino oscillations was demonstrated by experiments conducted at SNO and Kamioka. The Swedish Academy rewarded the findings with two Nobel Prices : Koshiba, Davis and Giacconi (2002) and Kajita and Mc Donald (2015) Some of the experiments which contributed (and still contribute) to the measurements of neutrino oscillation parameters are K2K, Double CHOOZ, Borexino, MINOS, T2K, Daya Bay. Like other underground labs ANDES will certainly be a good option for these large scale experiments.
    [Show full text]
  • Results in Neutrino Oscillations from Super-Kamiokande I
    Status of the RENO Reactor Neutrino Experiment RENO = Reactor Experiment for Neutrino Oscillation (For RENO Collaboration) K.K. Joo Chonnam National University February 15, 2011 Research Techniques Seminar @FNAL Outline Experiment Goals of the RENO Exp. - Short introduction - Expected q13 sensitivity - Systematic uncertainty Overview of the RENO Experiment - Experimental Setup of RENO - Schedule - Tunnel excavation - Status of detector construction - DAQ, data analysis tools Summary Brief History of Neutrinos 1930: Pauli postulated neutrino to explain b decay problem 1933: Fermi baptized the neutrino in his weak-interaction theory 1956: First discovery of neutrino by Reines & Cowan from reactor 1957: Neutrinos are left-handed by Glodhaber et al. 1962: Discovery of nm by Lederman et al. (Brookhaven Lab) 1974: Discovery of neutral currents due to neutrinos 1977: Tau lepton discovery by Perl et al. (SLAC) 1998: Atmospheric neutrino oscillation observed by Super-K 2000: nt discovery by DONUT (Fermilab) 2002: Solar neutrino oscillation observed by SNO and confirmed by Kamland What NEXT? Standard Model Neutrinos in SM Neutrino Oscillation . Three types of neutrinos exist & mixing among them Oscillation parameters (q12 , q23 , q13) Not measured yet . Elementary particles with almost no interactions . Almost massless: impossible to measure its mass Neutrino Mixing Parameters Matrix Components: νe Ue1 Ue2 Ue3 ν1 3 Angles (θ ; θ ; θ ) 12 13 23 ν U U U ν 1 CP phase (δ) μ μ1 μ2 μ3 2 2 Mass differences ντ Uτ1 Uτ2 Uτ3 ν3 1 0 0 c 0 s ei c s 0 13 13 12 12 U 0 c23 s23 0 1 0 s12 c12 0 i 0 s23 c23 s13e 0 c13 0 0 1 atmospheric SK, K2K The Next Big Thing? SNO, solar SK, KamLAND ≈ ≈ ° q23 qatm 45 q12 ≈qsol ≈ 32° Large and maximal mixing! Reduction of reactor neutrinos due to oscillations Disappearance Reactor neutrino disappearance Prob.
    [Show full text]
  • Letter of Interest Forthcoming Science from The
    Snowmass2021 - Letter of Interest Forthcoming Science from the PROSPECT-I Data Set Neutrino Frontier Topical Groups: (NF02) Sterile neutrinos (NF03) Beyond the Standard Model (NF07) Applications (NF09) Artificial neutrino sources Contact Information: Nathaniel Bowden (LLNL) [[email protected]] Karsten Heeger (Yale University) [[email protected]] Pieter Mumm (NIST) [[email protected]] M. Andriamirado,6 A. B. Balantekin,16 H. R. Band,17 C. D. Bass,8 D. E. Bergeron,10 D. Berish,13 N. S. Bowden,7 J. P.Brodsky,7 C. D. Bryan,11 R. Carr,9 T. Classen,7 A. J. Conant,4 G. Deichert,11 M. V.Diwan,2 M. J. Dolinski,3 A. Erickson,4 B. T. Foust,17 J. K. Gaison,17 A. Galindo-Uribarri,12, 14 C. E. Gilbert,12, 14 C. Grant,1 B. T. Hackett,12, 14 S. Hans,2 A. B. Hansell,13 K. M. Heeger,17 D. E. Jaffe,2 X. Ji,2 D. C. Jones,13 O. Kyzylova,3 C. E. Lane,3 T. J. Langford,17 J. LaRosa,10 B. R. Littlejohn,6 X. Lu,12, 14 J. Maricic,5 M. P.Mendenhall,7 A. M. Meyer,5 R. Milincic,5 I. Mitchell,5 P.E. Mueller,12 H. P.Mumm,10 J. Napolitano,13 C. Nave,3 R. Neilson,3 J. A. Nikkel,17 D. Norcini,17 S. Nour,10 J. L. Palomino,6 D. A. Pushin,15 X. Qian,2 E. Romero-Romero,12, 14 R. Rosero,2 P.T. Surukuchi,17 M. A. Tyra,10 R. L. Varner,12 D. Venegas-Vargas,12, 14 P.B.
    [Show full text]
  • Neutrinoless Double Beta Decay Searches
    FLASY2019: 8th Workshop on Flavor Symmetries and Consequences in 2016 Symmetry Magazine Accelerators and Cosmology Neutrinoless Double Beta Decay Ke Han (韩柯) Shanghai Jiao Tong University Searches: Status and Prospects 07/18, 2019 Outline .General considerations for NLDBD experiments .Current status and plans for NLDBD searches worldwide .Opportunities at CJPL-II NLDBD proposals in China PandaX series experiments for NLDBD of 136Xe 07/22/19 KE HAN (SJTU), FLASY2019 2 Majorana neutrino and NLDBD From Physics World 1935, Goeppert-Mayer 1937, Majorana 1939, Furry Two-Neutrino double beta decay Majorana Neutrino Neutrinoless double beta decay NLDBD 1930, Pauli 1933, Fermi + 2 + (2 ) Idea of neutrino Beta decay theory 136 136 − 07/22/19 54 → KE56 HAN (SJTU), FLASY2019 3 ̅ NLDBD probes the nature of neutrinos . Majorana or Dirac . Lepton number violation . Measures effective Majorana mass: relate 0νββ to the neutrino oscillation physics Normal Inverted Phase space factor Current Experiments Nuclear matrix element Effective Majorana neutrino mass: 07/22/19 KE HAN (SJTU), FLASY2019 4 Detection of double beta decay . Examples: . Measure energies of emitted electrons + 2 + (2 ) . Electron tracks are a huge plus 136 136 − 54 → 56 + 2 + (2)̅ . Daughter nuclei identification 130 130 − 52 → 54 ̅ 2νββ 0νββ T-REX: arXiv:1512.07926 Sum of two electrons energy Simulated track of 0νββ in high pressure Xe 07/22/19 KE HAN (SJTU), FLASY2019 5 Impressive experimental progress . ~100 kg of isotopes . ~100-person collaborations . Deep underground . Shielding + clean detector 1E+27 1E+25 1E+23 1E+21 life limit (year) life - 1E+19 half 1E+17 Sn Ca νββ Ge Te 0 1E+15 Xe 1E+13 1940 1950 1960 1970 1980 1990 2000 2010 2020 Year .
    [Show full text]
  • APC Scientific Board 2017 Tech
    2012-2016 APC Laboratory Technical Activities T. Zerguerras on behalf of the Technical Departments 20/11/2017 APC Scientific Board 2017 1 Technical Departments Organisation Equipment, facilities and platform Instrumentation Department (Techniques Expérimentales) Electronics and Microelectronics Department Mechanics Department IT Department Quality Unit R&D: CMB µelectronic, Compton, GAMMACUBE, Liquido Analysis & Prospects 20/11/2017 APC Scientific Board 2017 2 General organisation • 5 technical departments + Quality Unit + the FACe platform • Building an instrument => combining skills 22/09/2017 APC Scientific Board 2017 3 Technical departments organisation Matrix organisation structure: Project/Department (Assignment to a department, participation to projects) One specific skill (Mechanics, Electronics/µelectronics, Instrumentation, IT, QA/PA) Transverse activities of the Quality Unit Supervision : Head of department Project coordination: Project manager Indicator Boards for activities and assignments monitoring Project Monitoring Committee (Comité de Suivi de Projets CSP) This organisation aims to create a bond of trust with funding and tutelage agencies 20/11/2017 APC Scientific Board 2017 4 Organisation: Technical staff evolution On 31/12 Technical departments staff evolution 60 Technical departments staff - Gender 45 50 40 40 35 34 30 30 33 35 38 38 Permanent 25 MEN Fixed-term 20 38 40 39 40 39 20 WOMEN 15 10 10 15 17 13 12 12 5 10 11 9 10 11 0 0 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016 Technical departments
    [Show full text]
  • Muon Spallation in Double Chooz
    Muon Spallation in Double Chooz Claire Thomas∗ REU, Columbia University and MIT (Dated: August 10, 2009) This report presents my work for Double Chooz at MIT during the 2009 Summer REU program, funded by Columbia University. Double Chooz is a reactor neutrino experiment that aims to measure the mixing parameter θ13. The experiment detects electron antineutrinos via inverse beta decay. Neutrons and light nuclei made in muon spallation are a major background to the experiment. The delayed neutron emitter 9Li is especially problematic because it mimics the inverse beta decay signal. For this reason I studied muon spallation in Double Chooz, focusing on the production and subsequent decay of 9Li. There are two key differences between 9Li decay and inverse beta decay. The first is that 9Li is a β− decay, so it emits an electron, whereas inverse beta decay emits a positron. The second difference is the energy of the neutrons emitted. In 9Li decay the neutron energy is on the order of MeV, whereas the inverse beta decay neutron has a negligible kinetic energy. Since Double Chooz does not distinguish charge, the positrons and electrons are not easy to distinguish. First, I ran simulations of electrons and positrons in the Double Chooz detector and constructed a late light variable to distinguish them from electrons. This proved insufficient, so I wrote general software to simulate radioactive decays in the Double Chooz detector. In this report I present the deposited energy spectra of a few important decays. 1. INTRODUCTION The consequence of neutrino oscillation is that an ex- periment that is sensitive to only one of the three neu- 1.1.
    [Show full text]
  • A Deep Sea Telescope for High Energy Neutrinos
    A Deep Sea Telescope for High Energy Neutrinos The ANTARES Collaboration 31 May, 1999 arXiv:astro-ph/9907432v1 29 Jul 1999 CPPM-P-1999-02 DAPNIA 99-01 IFIC/99-42 SHEF-HEP/99-06 This document may be retrieved from the Antares web site: http://antares.in2p3.fr/antares/ Abstract The ANTARES Collaboration proposes to construct a large area water Cherenkov detector in the deep Mediterranean Sea, optimised for the detection of muons from high-energy astrophysical neutrinos. This paper presents the scientific motivation for building such a device, along with a review of the technical issues involved in its design and construction. The observation of high energy neutrinos will open a new window on the universe. The primary aim of the experiment is to use neutrinos as a tool to study particle acceleration mechanisms in energetic astrophysical objects such as active galactic nuclei and gamma-ray bursts, which may also shed light on the origin of ultra-high-energy cosmic rays. At somewhat lower energies, non-baryonic dark matter (WIMPs) may be detected through the neutrinos produced when gravitationally captured WIMPs annihilate in the cores of the Earth and the Sun, and neutrino oscillations can be measured by studying distortions in the energy spectrum of upward-going atmospheric neutrinos. The characteristics of the proposed site are an important consideration in detector design. The paper presents measurements of water transparency, counting rates from bioluminescence and potassium 40, bio-fouling of the optical modules housing the detectors photomultipliers, current speeds and site topography. These tests have shown that the proposed site provides a good-quality environment for the detector, and have also demonstrated the feasibility of the deployment technique.
    [Show full text]
  • Neutrino Oscillation Studies with Reactors
    REVIEW Received 3 Nov 2014 | Accepted 17 Mar 2015 | Published 27 Apr 2015 DOI: 10.1038/ncomms7935 OPEN Neutrino oscillation studies with reactors P. Vogel1, L.J. Wen2 & C. Zhang3 Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well- understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle y13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. eutrinos, the products of radioactive decay among other things, are somewhat enigmatic, since they can travel enormous distances through matter without interacting even once. NUnderstanding their properties in detail is fundamentally important. Notwithstanding that they are so very difficult to observe, great progress in this field has been achieved in recent decades. The study of neutrinos is opening a path for the generalization of the so-called Standard Model that explains most of what we know about elementary particles and their interactions, but in the view of most physicists is incomplete. The Standard Model of electroweak interactions, developed in late 1960s, incorporates À À neutrinos (ne, nm, nt) as left-handed partners of the three families of charged leptons (e , m , t À ). Since weak interactions are the only way neutrinos interact with anything, the un-needed right-handed components of the neutrino field are absent in the Model by definition and neutrinos are assumed to be massless, with the individual lepton number (that is, the number of leptons of a given flavour or family) being strictly conserved.
    [Show full text]
  • Neutrino Oscillations: the Rise of the PMNS Paradigm Arxiv:1710.00715
    Neutrino oscillations: the rise of the PMNS paradigm C. Giganti1, S. Lavignac2, M. Zito3 1 LPNHE, CNRS/IN2P3, UPMC, Universit´eParis Diderot, Paris 75252, France 2Institut de Physique Th´eorique,Universit´eParis Saclay, CNRS, CEA, Gif-sur-Yvette, France∗ 3IRFU/SPP, CEA, Universit´eParis-Saclay, F-91191 Gif-sur-Yvette, France November 17, 2017 Abstract Since the discovery of neutrino oscillations, the experimental progress in the last two decades has been very fast, with the precision measurements of the neutrino squared-mass differences and of the mixing angles, including the last unknown mixing angle θ13. Today a very large set of oscillation results obtained with a variety of experimental config- urations and techniques can be interpreted in the framework of three active massive neutrinos, whose mass and flavour eigenstates are related by a 3 3 unitary mixing matrix, the Pontecorvo- × Maki-Nakagawa-Sakata (PMNS) matrix, parameterized by three mixing angles θ12, θ23, θ13 and a CP-violating phase δCP. The additional parameters governing neutrino oscillations are the squared- mass differences ∆m2 = m2 m2, where m is the mass of the ith neutrino mass eigenstate. This ji j − i i review covers the rise of the PMNS three-neutrino mixing paradigm and the current status of the experimental determination of its parameters. The next years will continue to see a rich program of experimental endeavour coming to fruition and addressing the three missing pieces of the puzzle, namely the determination of the octant and precise value of the mixing angle θ23, the unveiling of the neutrino mass ordering (whether m1 < m2 < m3 or m3 < m1 < m2) and the measurement of the CP-violating phase δCP.
    [Show full text]
  • Groupe Neutrino
    Groupe Neutrino HCERES Report 2013-17 Present Composition •[9] permanents –Stavros Katsanevas* (Prof),Antoine Kouchner* (Prof), Thomas Patzak* (Prof), Véronique Van Elewyck (MC), Alessandra Tonazzo* (Prof) –Anatael Cabrera (CR), Jaime Dawson(CR), Davide Franco*(CR) –Thierry Lasserre* (DR CEA) [*HDR] •[4] postdocs –Marco Grassi, LiquidO, Marie Curie, –Anthony Onillon, Double Chooz, IN2P3, 15/09/2015 – 14/09/2018 –Christine Nielson, KM3NeT/ORCA, 09/2017 – –Stefan Wagner, LiquidO, CDD, July. 2017 – June. 2018 •[5] PhD students –Theodoros Avgitas*, CD , Antoine Kouchner, 11/2014 – 11/2017 –Simon Bourret*, AMX, Veronique Van Elewyk (Eduoard Kaminksi), 09/2015 –2018 –Timothée Gregoire*, CDE , Antoine Kouchner, 10/2015- 2018 –Yan Han, CSC, Anatael Cabrera, 09/2017 – 2020 –Andrea Scarpelli, CD , Thomas Patzak & Alessandra Tonazzo, 10/2016 – 2019 [*aussi membres du groupe Haute Energies – KM3NET] Recent Evolution (last 5 years) - I •Permanents Christiano Galbiati, DarkSide, invited professeur UPSC, 03/2016 – 12/2016 Fumihiko Suekane, LiquidO, chair Blaise-Pascal , 04/2017 – 11/2018 Michel Cribier (CEA DR), emeritus 2009 Herve de Kerret (DR), emeritus 2014 Francois Vannucci (PR), emeritus 2012 Daniel Vignaud (DR), emeritus 2007 Didier Kryn (CR), retired 2013 Michel Obolensky (CR), retired 2015 •Postdocs Hector Gomez, DoubleChooz/MuonTomography, labex UnivEarth (E4), 09/2014 - 09/2017 Joao de Abreu Barbosa Coelho, KM3NET ORCA, labex UnivEarth (E4), 12/2015 – 09/2017 Quentin Riffard, DarkSide, UnivEarth (E4), 11/2015 – 09/2017 Romain Roncin, Borexino/SOX,
    [Show full text]
  • Status of Neutrino Oscillations I: the Three-Neutrino Scenario
    International Workshop on Astroparticle and High Energy Physics PROCEEDINGS Status of neutrino oscillations I: the three-neutrino scenario Michele Maltoni∗ IFIC, CSIC/Universitat de Val`encia, Apt 22085, E{46071 Valencia, Spain YITP, SUNY at Stony Brook, Stony Brook, NY 11794-3840, USA E-mail: [email protected] Abstract: We present a global analysis of neutrino oscillation data within the three- neutrino oscillation scheme, including in our fit all the current solar neutrino data, the reactor neutrino data from KamLAND and CHOOZ, the atmospheric neutrino data from Super-Kamiokande and MACRO, and the first data from the K2K long-baseline accel- erator experiment. We determine the current best fit values and allowed ranges for the three-flavor oscillation parameters, discussing the relevance of each individual data set as well as the complementarity of different data sets. Furthermore, we analyze in detail the 2 2 status of the small parameters θ13 and ∆m21=∆m31, which fix the possible strength of CP violating effects in neutrino oscillations. Keywords: Neutrino mass and mixing; solar, atmospheric, reactor and accelerator neutrinos. 1. Introduction Recently, the Sudbury Neutrino Observatory (SNO) experiment [1] has released an im- proved measurement with enhanced neutral current sensitivity due to neutron capture on salt, which has been added to the heavy water in the SNO detector. This adds precious information to the large amount of data on neutrino oscillations published in the last few years. Thanks to this growing body of data a rather clear picture of the neutrino sector is starting to emerge. In particular, the results of the KamLAND reactor experiment [2] have played an important role in confirming that the disappearance of solar electron neu- trinos [3, 4, 5, 6, 7], the long-standing solar neutrino problem, is mainly due to oscillations and not to other types of neutrino conversions.
    [Show full text]