Measurement of the Tau Neutrino Cross Section in Atmospheric Neutrino Oscillations with Super-Kamiokande
Total Page:16
File Type:pdf, Size:1020Kb
PHYSICAL REVIEW D 98, 052006 (2018) Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande Z. Li,9 K. Abe,1,37 C. Bronner,1 Y. Hayato,1,37 M. Ikeda,1 K. Iyogi,1 J. Kameda,1,37 Y. Kato,1 Y. Kishimoto,1,37 Ll. Marti,1 M. Miura,1,37 S. Moriyama,1,37 M. Nakahata,1,37 Y. Nakajima,1,37 Y. Nakano,1 S. Nakayama,1,37 A. Orii,1 G. Pronost,1 H. Sekiya,1,37 M. Shiozawa,1,37 Y. Sonoda,1 A. Takeda,1,37 A. Takenaka,1 H. Tanaka,1 S. Tasaka,1 T. Tomura,1,37 R. Akutsu,2 T. Kajita,2,37 Y. Nishimura,2 K. Okumura,2,37 K. M. Tsui,2 P. Fernandez,3 L. Labarga,3 F. d. M. Blaszczyk,4 J. Gustafson,4 C. Kachulis,4 E. Kearns,4,37 J. L. Raaf,4 J. L. Stone,4,37 L. R. Sulak,4 S. Berkman,5 S. Tobayama,5 M. Elnimr,6 W. R. Kropp,6 S. Locke,6 S. Mine,6 P. Weatherly,6 M. B. Smy,6,37 H. W. Sobel,6,37 V. Takhistov,6,* K. S. Ganezer,7 J. Hill,7 J. Y. Kim,8 I. T. Lim,8 R. G. Park,8 A. Himmel,9 E. O’Sullivan,9 K. Scholberg,9,37 C. W. Walter,9,37 T. Ishizuka,10 T. Nakamura,11 J. S. Jang,12 K. Choi,13 J. G. Learned,13 S. Matsuno,13 S. N. Smith,13 J. Amey,14 R. P. Litchfield,14 W. Y. Ma,14 Y. Uchida,14 M. O. Wascko,14 S. Cao,15 M. Friend,15 T. Hasegawa,15 T. Ishida,15 T. Ishii,15 T. Kobayashi,15 T. Nakadaira,15 K. Nakamura,15,37 Y. Oyama,15 K. Sakashita,15 T. Sekiguchi,15 T. Tsukamoto,15 KE. Abe,16 M. Hasegawa,16 A. T. Suzuki,16 Y. Takeuchi,16,37 T. Yano,16 T. Hayashino,17 T. Hiraki,17 S. Hirota,17 K. Huang,17 M. Jiang,17 M. Mori,17 KE. Nakamura,17 T. Nakaya,17,37 N. D. Patel,17 R. A. Wendell,17,37 L. H. V. Anthony,18 N. McCauley,18 A. Pritchard,18 Y. Fukuda,19 Y. Itow,20,21 M. Murase,20 F. Muto,20 P. Mijakowski,22 K. Frankiewicz,22 C. K. Jung,23 X. Li,23 J. L. Palomino,23 † G. Santucci,23 C. Vilela,23 M. J. Wilking,23 C. Yanagisawa,23, G. Yang,23 S. Ito,24 D. Fukuda,24 H. Ishino,24 A. Kibayashi,24 Y. Koshio,24,37 H. Nagata,24 M. Sakuda,24 C. Xu,24 Y. Kuno,25 D. Wark,26,32 F. Di Lodovico,27 B. Richards,27 S. M. Sedgwick,27 R. Tacik,28,41 S. B. Kim,29 A. Cole,30 L. Thompson,30 H. Okazawa,31 Y. Choi,33 K. Ito,34 K. Nishijima,34 M. Koshiba,35 Y. Suda,36 M. Yokoyama,36,37 R. G. Calland,37 M. Hartz,37 K. Martens,37 M. Murdoch,37 B. Quilain,37 C. Simpson,37,26 Y. Suzuki,37 M. R. Vagins,37,6 D. Hamabe,38 M. Kuze,38 Y. Okajima,38 T. Yoshida,38 M. Ishitsuka,39 J. F. Martin,40 C. M. Nantais,40 H. A. Tanaka,40 T. Towstego,40 A. Konaka,41 S. Chen,42 L. Wan,42 Y. Zhang,42 A. Minamino,43 and R. J. Wilkes44 (Super-Kamiokande Collaboration) 1Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan 2Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan 3Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain 4Department of Physics, Boston University, Boston, Massachusetts 02215, USA 5Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada 6Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA 7Department of Physics, California State University, Dominguez Hills, Carson, California 90747, USA 8Department of Physics, Chonnam National University, Kwangju 500-757, Korea 9Department of Physics, Duke University, Durham, North Carolina 27708, USA 10Junior College, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295, Japan 11Department of Physics, Gifu University, Gifu 501-1193, Japan 12GIST College, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea 13Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA 14Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom 15High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan 16Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan 17Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan 18Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom 19Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan 20Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8602, Japan 21Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Aichi 464-8602, Japan 22National Centre For Nuclear Research, 00-681 Warsaw, Poland 23Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA 2470-0010=2018=98(5)=052006(16) 052006-1 Published by the American Physical Society Z. LI et al. PHYS. REV. D 98, 052006 (2018) 24Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan 25Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan 26Department of Physics, Oxford University, Oxford OX1 3PU, United Kingdom 27School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom 28Department of Physics, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4SOA2, Canada 29Department of Physics, Seoul National University, Seoul 151-742, Korea 30Department of Physics and Astronomy, University of Sheffield, Sheffield S10 2TN, United Kingdom 31Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka 425-8611, Japan 32STFC, Rutherford Appleton Laboratory, Harwell Oxford, and Daresbury Laboratory, Warrington OX11 0QX, United Kingdom 33Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea 34Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan 35The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan 36Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan 37Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan 38Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan 39Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan 40Department of Physics, University of Toronto, Ontario M5S 1A7, Canada 41TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T2A3 Canada 42Department of Engineering Physics, Tsinghua University, Beijing 100084, China 43Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan 44Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA (Received 27 November 2017; published 13 September 2018) Using 5326 days of atmospheric neutrino data, a search for atmospheric tau neutrino appearance has been performed in the Super-Kamiokande experiment. Super-Kamiokande measures the tau normalization to be 1.47 Æ 0.32 under the assumption of normal neutrino hierarchy, relative to the expectation of unity with neutrino oscillation. The result excludes the hypothesis of no-tau appearance with a significance level of 4.6σ. The inclusive charged-current tau neutrino cross section averaged by the tau neutrino flux at Super- Kamiokande is measured to be ð0.94 Æ 0.20Þ × 10−38 cm2. The measurement is consistent with the Standard Model prediction, agreeing to within 1.5σ. DOI: 10.1103/PhysRevD.98.052006 I. INTRODUCTION are characterized by a large deficit of muon events. The deficit is largely explained by the quantum mechanical In the three-flavor neutrino framework, the three neutrino mixing of the propagating mass states such that weak flavor states (νe, νμ, ντ) are superpositions of three neutrino interaction at the detector is comprised of a mixture of muon mass states (ν1, ν2, ν3). The oscillation parameters in the framework have been measured in atmospheric neutrino and tau flavors, whereas most of the tau neutrino flux has experiments [1–3], solar neutrino experiments [4–6], reactor energy below the tau lepton production threshold. The neutrino experiments [7–10], and long-baseline neutrino objective of this paper is to observe those tau neutrino experiments [11–13]. Atmospheric neutrino observations interactions that are above that threshold. A direct detection of tau neutrinos from neutrino oscillation is important for an unambiguous confirmation of three-flavor neutrino *Also at Department of Physics and Astronomy, UCLA, California 90095-1547, USA. oscillations. † Also at BMCC/CUNY, Science Department, New York, However, the detection of tau neutrino appearance is New York, USA. challenging. Charged-current neutrino interactions are required to determine the flavor in neutrino detection. Published by the American Physical Society under the terms of Charged-current tau lepton appearance has an energy the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to threshold of 3.5 GeV, and the charged-current tau neutrino the author(s) and the published article’s title, journal citation, cross section is greatly suppressed at low energies due to and DOI. Funded by SCOAP3. the large mass of the tau lepton relative to the electron or 052006-2 MEASUREMENT OF THE TAU NEUTRINO CROSS SECTION … PHYS. REV. D 98, 052006 (2018) muon. The DONUT experiment first directly observed the about 1 km rock overburden (2.7 km water equivalent) at tau neutrino by measuring charged-current interactions the Ikenoyama mountain in Japan [18,19]. The detector is using a high-energy neutrino beam that contained tau arranged into two optically separated regions: the inner neutrinos [14].