Measurement of the Tau Neutrino Cross Section in Atmospheric Neutrino Oscillations with Super-Kamiokande

Total Page:16

File Type:pdf, Size:1020Kb

Measurement of the Tau Neutrino Cross Section in Atmospheric Neutrino Oscillations with Super-Kamiokande PHYSICAL REVIEW D 98, 052006 (2018) Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande Z. Li,9 K. Abe,1,37 C. Bronner,1 Y. Hayato,1,37 M. Ikeda,1 K. Iyogi,1 J. Kameda,1,37 Y. Kato,1 Y. Kishimoto,1,37 Ll. Marti,1 M. Miura,1,37 S. Moriyama,1,37 M. Nakahata,1,37 Y. Nakajima,1,37 Y. Nakano,1 S. Nakayama,1,37 A. Orii,1 G. Pronost,1 H. Sekiya,1,37 M. Shiozawa,1,37 Y. Sonoda,1 A. Takeda,1,37 A. Takenaka,1 H. Tanaka,1 S. Tasaka,1 T. Tomura,1,37 R. Akutsu,2 T. Kajita,2,37 Y. Nishimura,2 K. Okumura,2,37 K. M. Tsui,2 P. Fernandez,3 L. Labarga,3 F. d. M. Blaszczyk,4 J. Gustafson,4 C. Kachulis,4 E. Kearns,4,37 J. L. Raaf,4 J. L. Stone,4,37 L. R. Sulak,4 S. Berkman,5 S. Tobayama,5 M. Elnimr,6 W. R. Kropp,6 S. Locke,6 S. Mine,6 P. Weatherly,6 M. B. Smy,6,37 H. W. Sobel,6,37 V. Takhistov,6,* K. S. Ganezer,7 J. Hill,7 J. Y. Kim,8 I. T. Lim,8 R. G. Park,8 A. Himmel,9 E. O’Sullivan,9 K. Scholberg,9,37 C. W. Walter,9,37 T. Ishizuka,10 T. Nakamura,11 J. S. Jang,12 K. Choi,13 J. G. Learned,13 S. Matsuno,13 S. N. Smith,13 J. Amey,14 R. P. Litchfield,14 W. Y. Ma,14 Y. Uchida,14 M. O. Wascko,14 S. Cao,15 M. Friend,15 T. Hasegawa,15 T. Ishida,15 T. Ishii,15 T. Kobayashi,15 T. Nakadaira,15 K. Nakamura,15,37 Y. Oyama,15 K. Sakashita,15 T. Sekiguchi,15 T. Tsukamoto,15 KE. Abe,16 M. Hasegawa,16 A. T. Suzuki,16 Y. Takeuchi,16,37 T. Yano,16 T. Hayashino,17 T. Hiraki,17 S. Hirota,17 K. Huang,17 M. Jiang,17 M. Mori,17 KE. Nakamura,17 T. Nakaya,17,37 N. D. Patel,17 R. A. Wendell,17,37 L. H. V. Anthony,18 N. McCauley,18 A. Pritchard,18 Y. Fukuda,19 Y. Itow,20,21 M. Murase,20 F. Muto,20 P. Mijakowski,22 K. Frankiewicz,22 C. K. Jung,23 X. Li,23 J. L. Palomino,23 † G. Santucci,23 C. Vilela,23 M. J. Wilking,23 C. Yanagisawa,23, G. Yang,23 S. Ito,24 D. Fukuda,24 H. Ishino,24 A. Kibayashi,24 Y. Koshio,24,37 H. Nagata,24 M. Sakuda,24 C. Xu,24 Y. Kuno,25 D. Wark,26,32 F. Di Lodovico,27 B. Richards,27 S. M. Sedgwick,27 R. Tacik,28,41 S. B. Kim,29 A. Cole,30 L. Thompson,30 H. Okazawa,31 Y. Choi,33 K. Ito,34 K. Nishijima,34 M. Koshiba,35 Y. Suda,36 M. Yokoyama,36,37 R. G. Calland,37 M. Hartz,37 K. Martens,37 M. Murdoch,37 B. Quilain,37 C. Simpson,37,26 Y. Suzuki,37 M. R. Vagins,37,6 D. Hamabe,38 M. Kuze,38 Y. Okajima,38 T. Yoshida,38 M. Ishitsuka,39 J. F. Martin,40 C. M. Nantais,40 H. A. Tanaka,40 T. Towstego,40 A. Konaka,41 S. Chen,42 L. Wan,42 Y. Zhang,42 A. Minamino,43 and R. J. Wilkes44 (Super-Kamiokande Collaboration) 1Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan 2Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan 3Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain 4Department of Physics, Boston University, Boston, Massachusetts 02215, USA 5Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada 6Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA 7Department of Physics, California State University, Dominguez Hills, Carson, California 90747, USA 8Department of Physics, Chonnam National University, Kwangju 500-757, Korea 9Department of Physics, Duke University, Durham, North Carolina 27708, USA 10Junior College, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295, Japan 11Department of Physics, Gifu University, Gifu 501-1193, Japan 12GIST College, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea 13Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA 14Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom 15High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan 16Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan 17Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan 18Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom 19Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan 20Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8602, Japan 21Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Aichi 464-8602, Japan 22National Centre For Nuclear Research, 00-681 Warsaw, Poland 23Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA 2470-0010=2018=98(5)=052006(16) 052006-1 Published by the American Physical Society Z. LI et al. PHYS. REV. D 98, 052006 (2018) 24Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan 25Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan 26Department of Physics, Oxford University, Oxford OX1 3PU, United Kingdom 27School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom 28Department of Physics, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4SOA2, Canada 29Department of Physics, Seoul National University, Seoul 151-742, Korea 30Department of Physics and Astronomy, University of Sheffield, Sheffield S10 2TN, United Kingdom 31Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka 425-8611, Japan 32STFC, Rutherford Appleton Laboratory, Harwell Oxford, and Daresbury Laboratory, Warrington OX11 0QX, United Kingdom 33Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea 34Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan 35The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan 36Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan 37Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan 38Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan 39Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan 40Department of Physics, University of Toronto, Ontario M5S 1A7, Canada 41TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T2A3 Canada 42Department of Engineering Physics, Tsinghua University, Beijing 100084, China 43Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan 44Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA (Received 27 November 2017; published 13 September 2018) Using 5326 days of atmospheric neutrino data, a search for atmospheric tau neutrino appearance has been performed in the Super-Kamiokande experiment. Super-Kamiokande measures the tau normalization to be 1.47 Æ 0.32 under the assumption of normal neutrino hierarchy, relative to the expectation of unity with neutrino oscillation. The result excludes the hypothesis of no-tau appearance with a significance level of 4.6σ. The inclusive charged-current tau neutrino cross section averaged by the tau neutrino flux at Super- Kamiokande is measured to be ð0.94 Æ 0.20Þ × 10−38 cm2. The measurement is consistent with the Standard Model prediction, agreeing to within 1.5σ. DOI: 10.1103/PhysRevD.98.052006 I. INTRODUCTION are characterized by a large deficit of muon events. The deficit is largely explained by the quantum mechanical In the three-flavor neutrino framework, the three neutrino mixing of the propagating mass states such that weak flavor states (νe, νμ, ντ) are superpositions of three neutrino interaction at the detector is comprised of a mixture of muon mass states (ν1, ν2, ν3). The oscillation parameters in the framework have been measured in atmospheric neutrino and tau flavors, whereas most of the tau neutrino flux has experiments [1–3], solar neutrino experiments [4–6], reactor energy below the tau lepton production threshold. The neutrino experiments [7–10], and long-baseline neutrino objective of this paper is to observe those tau neutrino experiments [11–13]. Atmospheric neutrino observations interactions that are above that threshold. A direct detection of tau neutrinos from neutrino oscillation is important for an unambiguous confirmation of three-flavor neutrino *Also at Department of Physics and Astronomy, UCLA, California 90095-1547, USA. oscillations. † Also at BMCC/CUNY, Science Department, New York, However, the detection of tau neutrino appearance is New York, USA. challenging. Charged-current neutrino interactions are required to determine the flavor in neutrino detection. Published by the American Physical Society under the terms of Charged-current tau lepton appearance has an energy the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to threshold of 3.5 GeV, and the charged-current tau neutrino the author(s) and the published article’s title, journal citation, cross section is greatly suppressed at low energies due to and DOI. Funded by SCOAP3. the large mass of the tau lepton relative to the electron or 052006-2 MEASUREMENT OF THE TAU NEUTRINO CROSS SECTION … PHYS. REV. D 98, 052006 (2018) muon. The DONUT experiment first directly observed the about 1 km rock overburden (2.7 km water equivalent) at tau neutrino by measuring charged-current interactions the Ikenoyama mountain in Japan [18,19]. The detector is using a high-energy neutrino beam that contained tau arranged into two optically separated regions: the inner neutrinos [14].
Recommended publications
  • Supersymmetry Searches at the Tevatron
    SUPERSYMMETRY SEARCHES AT THE TEVATRON For CDF and DØ collaborations R. Demina Department of Physics and Astronomy, University of Rochester, Rochester, USA, 14627 CDF and DØ collaborations analyzed up to 200 pb-1 of the delivered data in search for different supersymmetry signatures, so far with negative results. We present results on searches for chargino and neutralino associated production, squarks and gluinos, sbottom quarks, gauge mediated SUSY breaking and long lived heavy particles. Supersymmetry1 is a popular extension of the Standard Model originally suggested over 25 years ago. It postulates the symmetry between fermionic and bosonic degrees of freedom. As a result a variety of hypothetical particles is introduced. With presently available experimental data physicists were able to prove that if supersymmetric particles exist they must be heavier than their Standard Model partners2. In other words the Supersymmetry is broken. One possible exception is supersymmetric top quark (stop), which still has a chance to be lighter or of the same mass as top quark. With 2-4 fb-1 of data Tevatron experiments will be able to extend the limit on stop mass above that of top quark or discover it and thus establish the Supersymmetry3. Theory suggests several possible scenarios of Supersymmetry breaking mediated by gravitational or gauge interactions. In gravity mediated scenarios the number of free parameters in the model is reduced to five because of the unification of masses and couplings imposed at the grand unification scale. These parameters are M0 (M½) – masses of all bosons (fermions) at GUT scale, A0- trilinear coupling and µ0 – something Higgs and tan(β) – ratio of vacuum expectations of the Higgs doublet.
    [Show full text]
  • The History of Neutrinos, 1930 − 1985
    The History of Neutrinos, 1930 − 1985. What have we Learned About Neutrinos? What have we Learned Using Neutrinos? J. Steinberger Prepared for “25th International Conference On Neutrino Physics and Astrophysics”, Kyoto (Japan), June 2012 1 2 3 4 The detector of the experiment of Conversi, Pancini and Piccioni, 1946, 5 which showed that the mesotron is not the Yukawa particle. Detector with 80 Geiger counters. The muon decay spectrum is continuous. My thesis experiment, under Fermi, which showed that the muon decays into two neutral particles, plus the electron. Fermi, myself and others, in 1954, at a summer school in Varenna, lake Como, a few months before Fermi’s untimely disappearance. 6 Demonstration of the Neutrino In 1956 Cowan and Reines detected antineutrinos from a nuclear reactor, reacting with protons in liquid scintillator which also contained cadmium, observing the positron as well as the scattering of the neutron on cadmium. 7 The Electron and Muon Neutrinos are Different. 1. G. Feinberg, 1958. 2. B. Pontecorvo, 1959. 3. M. Schwartz (T.D. Lee), 1959 4. Higher energy accelerators, Courant, Livingston and Snyder. Pontecorvo 8 9 A C B D Spark chamber and counter arrangement. A are triggering counters, Energy spectra of neutrinos B, C and D are anticoincidence counters from pion and kaon decays. 10 Event with penetrating muon and hadron shower 11 The group of the 2nd neutrino experiment in 1962: J.S., Goulianos, Gaillard, Mistry, Danby, technician whose name I have forgotten, Lederman and Schwartz. 12 Same group, 26 years later, at Nobel ceremony in Stockholm. 13 Discovery of partons, nucleon structure, scaling, in deep inelastic scattering of electrons on protons at SLAC in 1969.
    [Show full text]
  • Three Extra Mirror Or Sequential Families: a Case for Heavy Higgs and Inert Doublet
    Three Extra Mirror or Sequential Families: a Case for Heavy Higgs and Inert Doublet Homero Mart´ınez,1 Alejandra Melfo,2, 3 Fabrizio Nesti,4 and Goran Senjanovi´c2 1CEA, Saclay, DSM-IRFU-SPP, France 2ICTP, Trieste, Italy 3U. de Los Andes, M´erida, Venezuela 4U. di Ferrara, Ferrara, Italy (Dated: October 24, 2018) We study the possibility of the existence of extra fermion families and an extra Higgs doublet. We find that requiring the extra Higgs doublet to be inert leaves space for three extra families, allowing for mirror fermion families and a dark matter candidate at the same time. The emerging scenario is very predictive: it consists of a Standard Model Higgs boson, with mass above 400 GeV, heavy new quarks between 340 and 500 GeV, light extra neutral leptons, and an inert scalar with a mass below MZ . PACS numbers: 14.65.Jk, 12.60.Fr, 14.60.Hi, 14.60.St Introduction. It may not be well known that the idea with regard to high precision analysis they behave exactly of parity restoration in weak interactions is as old as as ordinary fermions, and thus a reader who is uncom- the suggestion of its breakdown. In their classic paper, fortable with the above setbacks can view our study as Lee and Yang [1] proposed the existence of what we will referring to the more general question of whether the SM call mirror fermions, so as to make the world left-right can host three (or more) extra families. symmetric at high energies. By this they meant another If one defines the SM by its structure, i.e.
    [Show full text]
  • Bright Prospects for Tevatron Run II
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 Bright prospects for Tevatron Run II JLAB Virginia laboratory delivers terahertz light p6 ^^^J Modular and expandable power supplies WÊ H Communications via TCP/IP içert. n_.___910S.CAEN '^^^*aBOKS^^^^ • ÊÊÊ WÊÊÊSêSê É TÏSjj à OPC Server to ease integration in DCS J Directly interfaced to JCOP Framework p " j^pj ^ ^^^^ Wa9neticFie,dand^ ^^HTJHj^^^^^^^^^^^^^^^^^^^^^^E' ' tfHl far IM Éfefi-*il * CAEN: your largest choice of HV & LV )^ H MULTICHANNEL POWER SUPPLIES CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editors James Gillies and Christine Sutton CERN, 1211 Geneva 23, Switzerland Email [email protected] Fax+41 (22) 782 1906 Web cerncourier.com COURIER Advisory Board R Landua (Chairman), F Close, E Lillest0l, VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 H Hoffmann, C Johnson, K Potter, P Sphicas Laboratory correspondents: Argonne National Laboratory (US): D Ayres Brookhaven, National Laboratory (US): PYamin Cornell University (US): D G Cassel DESY Laboratory (Germany): Ilka Flegel, P Waloschek Fermi National Accelerator Laboratory (US): Judy Jackson GSI Darmstadt (Germany): G Siegert INFN
    [Show full text]
  • Tevatron Accelerator Physics and Operation Highlights A
    FERMILAB-CONF-11-129-APC TEVATRON ACCELERATOR PHYSICS AND OPERATION HIGHLIGHTS A. Valishev for the Tevatron group, FNAL, Batavia, IL 60510, U.S.A. Abstract Table 1: Integrated luminosity performance by fiscal year. The performance of the Tevatron collider demonstrated FY07 FY08 FY09 FY10 continuous growth over the course of Run II, with the peak luminosity reaching 4×1032 cm-2 s-1, and the weekly Total integral (fb-1) 1.3 1.8 1.9 2.47 -1 integration rate exceeding 70 pb . This report presents a review of the most important advances that contributed to Until the middle of calendar year 2009, the luminosity this performance improvement, including beam dynamics growth was dominated by improvements of the antiproton modeling, precision optics measurements and stability production rate [2], which remains stable since. control, implementation of collimation during low-beta Performance improvements over the last two years squeeze. Algorithms employed for optimization of the became possible because of implementation of a few luminosity integration are presented and the lessons operational changes, described in the following section. learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects. COLLIDER RUN II PERFORMANCE Tevatron collider Run II with proton-antiproton collisions at the center of mass energy of 1.96 TeV started in March 2001. Since then, 10.5 fb-1 of integrated luminosity has been delivered to CDF and D0 experiments (Fig. 1). All major technical upgrades of the accelerator complex were completed by 2007 [1].
    [Show full text]
  • 01Ii Beam Line
    STA N FO RD LIN EA R A C C ELERA TO R C EN TER Fall 2001, Vol. 31, No. 3 CONTENTS A PERIODICAL OF PARTICLE PHYSICS FALL 2001 VOL. 31, NUMBER 3 Guest Editor MICHAEL RIORDAN Editors RENE DONALDSON, BILL KIRK Contributing Editors GORDON FRASER JUDY JACKSON, AKIHIRO MAKI MICHAEL RIORDAN, PEDRO WALOSCHEK Editorial Advisory Board PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, EDWARD HARTOUNI ABRAHAM SEIDEN, GEORGE SMOOT HERMAN WINICK Illustrations TERRY ANDERSON Distribution CRYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585. EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electroni- cally on the World Wide Web at http://www.slac. stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Sudbury Neutrino Observatory detects neutrinos from the sun. This interior view from beneath the detector shows the acrylic vessel containing 1000 tons of heavy water, surrounded by photomultiplier tubes. (Courtesy SNO Collaboration) Printed on recycled paper 2 FOREWORD 32 THE ENIGMATIC WORLD David O. Caldwell OF NEUTRINOS Trying to discern the patterns of neutrino masses and mixing. FEATURES Boris Kayser 42 THE K2K NEUTRINO 4 PAULI’S GHOST EXPERIMENT A seventy-year saga of the conception The world’s first long-baseline and discovery of neutrinos. neutrino experiment is beginning Michael Riordan to produce results. Koichiro Nishikawa & Jeffrey Wilkes 15 MINING SUNSHINE The first results from the Sudbury 50 WHATEVER HAPPENED Neutrino Observatory reveal TO HOT DARK MATTER? the “missing” solar neutrinos.
    [Show full text]
  • Fermi National Accelerator Laboratory 132 Nsec Bunch Spacing in The
    Fermi National Accelerator Laboratory FERMILAR-TM-1920 132 nsec Bunch Spacing in the Tevatron Proton-Antiproton Collider S. D. Holmes et al. Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 December 1994 0 Operated by Universities Research Association Inc. under Contract No. DE-ACOZ-76CH030W with the United States Department of Energy Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infn’nge privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof 132 nsec Bunch Spacing in the Tevatron Proton-Antiproton Collider SD. Holmes, J. Holt, J.A. Johnstone, J. Marriner, M. Martens, D. McGinnis Fermi National Accelerator Laboratory December 23, 1994 Abstract Following completion of the Fermilah Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5x1031 cm-%ec-1 with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing.
    [Show full text]
  • MASTER -••••-".>; I~CN of TH;3 DOCUMENT 18 Unlfmfts DISCLAIMER
    i ' Do^y^W-S- 2 Progress report 2.1 The D0 Experiment The D0 detector had its first data run in the period May 1992 till June 1993. The first two thirds of the run period were characterized by low luminosity and frequent machine development periods. The luminosity gradually climbed, and the machine ultimately delivered 31 pb_1 to the experiment. The detector performed admirably well, and data analysis tracked data taking closely. The overall D0 efficiency was 54% and 16.7 pb_1 of data were collected; due to high backgrounds during Main Ring injection and transition, and beam gas interactions in the MR pipe that intersects our calorimeter, triggers in D0 were vetoed for about 29% of the store time; data acquisition busy (7%), experiment down time (5%), and run startup overhead (5%) added another 17% to the inefficiency. Many cycles of reconstruction software upgrade were done as experience with real data was gained, bugs were corrected, and new data corrections were added. First results were presented at the Spring 1993 APS meeting, the Summer conferences, and at the Fall 1993 pp symposium in Tsukuba. Several papers (See Attached [LeptoQuark PRL, RapGap PRL, Top PRL]) have appeared in print, a lepto-quark search, a rapidity-gap study, and. a lower mass limit on the Standard Model top quark where we also present a spectacular event that has laxge $y, a high energy electron and a high momentum muon, both isolated, and two sizable jets. When interpreted as a it event, a top mass around 145 GeV (with a large 30 GeV error) is obtained.
    ; I~CN of TH;3 DOCUMENT 18 Unlfmfts DISCLAIMER" class="panel-rg color-a">[Show full text]
  • Neutrino Physics
    Neutrino Physics Steve Boyd University of Warwick Course Map 1. History and properties of the neutrino, neutrino interactions, beams and detectors 2. Neutrino mass, direct mass measurements, double beta decay, flavour oscillations 3. Unravelling neutrino oscillations experimentally 4. Where we are and where we're going References K. Zuber, “Neutrino Physics”, IoP Publishing 2004 C. Giunti and C.W.Kim, “Fundamentals of Neutrino Physics and Astrophysics”, Oxford University Press, 2007. R. N. Mohaptara and P. B. Pal, “Massive Neutrinos in Physics and Astrophysics”, World Scientific (2nd Edition), 1998 H.V. Klapdor-Kleingrothaus & K. Zuber, “Particle Astrophysics”,IoP Publishing, 1997. Two Scientific American articles: “Detecting Massive Neutrinos”, E. Kearns, T. Kajita, Y. Totsuka, Scientific American, August 1999. “Solving the Solar Neutrino Problem”, A.B. McDonald, J.R. Klein, D.L. Wark, Scientific American, April 2003. Plus other Handouts Lecture 1 In which history is unravelled, desperation is answered, and the art of neutrino generation and detection explained Crisis It is 1914 – the new study of atomic physics is in trouble (Z+1,A) Spin 1/2 (Z,A) Spin 1/2 Spin 1/2 electron Spin ½ ≠ spin ½ + spin ½ E ≠ E +e Ra Bi “At the present stage of atomic “Desperate remedy.....” theory we have no arguments “I do not dare publish this idea....” for upholding the concept of “I admit my way out may look energy balance in the case of improbable....” b-ray disintegrations.” “Weigh it and pass sentence....” “You tell them. I'm off to a party” Detection of the Neutrino 1950 – Reines and Cowan set out to detect n 1951 1951 1951 I.
    [Show full text]
  • Future Hadron Physics at Fermilab
    Future Hadron Physics at Fermilab Jeffrey A. Appel Fermi National Accelerator Laboratory PO Box 500, Batavia, IL 60510 USA [email protected] Abstract. Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future – a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC - the level of needed R&D, the ILC costs, and the timing - Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERνA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05. Keywords: Fermilab, Tevatron, ILC, hadron, MIPP, MINERνA, Drell-Yan, proton driver. PACS: 13.85.-t INTRODUCTION In order to envisage the future of hadron physics at Fermilab, it will be useful to know the research context at the Laboratory. That can be best done by looking at the recent presentations by Fermilab's new Director, Piermaria Oddone, who began his tenure as Director on July 1, 2005. Pier has had several opportunities to project the vision of Fermilab's future, both inside the Laboratory and to outside committees.1 I draw heavily on his presentations.
    [Show full text]
  • Dstau: Study of Tau Neutrino Production with 400 Gev Protons from the CERN-SPS
    Prepared for submission to JHEP DsTau: Study of tau neutrino production with 400 GeV protons from the CERN-SPS Shigeki Aoki,a Akitaka Ariga,b;1 Tomoko Ariga,b;c Sergey Dmitrievsky,d Elena Firu,e Dean Forshaw,b Tsutomu Fukuda,f Yuri Gornushkin,d Ali Murat Guler,g Maria Haiduc,e Koichi Kodama,h Masahiro Komatsu,f Muhtesem Akif Korkmaz,g Umut Kose,i Madalina Miloi,e Antonio Miucci,b Motoaki Miyanishi,f Mitsuhiro Nakamura,f Toshiyuki Nakano,f Alina Neagu,e Hiroki Rokujo,f Osamu Sato,f Elizaveta Sitnikova,d Yosuke Suzuki,f Tomoki Takao,f Svetlana Vasina,d Mykhailo Vladymyrov,b Thomas Weston,b Junya Yoshida,j Masahiro Yoshimoto.k The DsTau Collaboration aKobe University, Kobe, Japan bAlbert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, Bern, Switzerland cKyushu University, Fukuoka, Japan dJoint Institute for Nuclear Research, Dubna, Russia eInstitute of Space Science, Bucharest, Romania f Nagoya University, Nagoya, Japan gMiddle East Technical University, Ankara, Turkey hAichi University of Education, Kariya, Japan iCERN, Geneva, Switzerland jAdvanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan kGifu University, Gifu, Japan E-mail: [email protected] Abstract: In the DsTau experiment at the CERN SPS, an independent and direct way to measure tau neutrino production following high energy proton interactions was proposed. As the main source of tau neutrinos is a decay of Ds mesons, produced in proton-nucleus arXiv:1906.03487v1 [hep-ex] 8 Jun 2019 interactions, the project aims at measuring a differential cross section of this reaction. The experimental method is based on a use of high resolution emulsion detectors for effective registration of events with short lived particle decays.
    [Show full text]
  • Status of New Physics Searches at the Tevatron
    DIS 2011 Newport News, VA Status of New Physics Searches at the Tevatron Craig Group (University of Virginia and Fermilab) on behalf of the CDF and D0 experiments… Outline Searches at the Tevatron • The Tevatron, CDF, and D0 • Dilepton/diphoton resonances • Diboson resonances • Complex final states (MET, jets, H.F.) • Higgs (SM) • Higgs (non‐SM) DIS2011 C. Group ‐ Review of Searches at the Tevatron 2 The Tevatron at Fermilab The Tevatron currently provides the high energy proton‐anproton collisions: Ecm = 1.96 TeV CDF DO Tevatron DIS2011 C. Group ‐ Review of Searches at the Tevatron 3 The Tevatron is… …and has been a Discovery Machine! Results shown today include 4‐8 ‐1 Single Top Rare Bs decays Diboson Channels Y(4140) Bs ΦΦ Charm mixing ZZ WZ Z+b Bs‐mixing Exclusive charm Exclusive ee Top Quark DIS2011 C. Group ‐ Review of Searches at the Tevatron 4 Dilepton Final States Old‐fashioned bump hunt in Mee distribuon: CDF: 5.7‐1 ‐Z producon and decay into ee/µµ precisely measured D0: 5.4‐1 ‐Lepton ID/Reco and Trigger efficiencies high and very well understood ‐Background low and easily determined (QCD fakes) ‐Clean events PLB 695, 88 (2011) CDF Public Note 10405 DIS2011 C. Group ‐ Review of Searches at the Tevatron 5 Dilepton Final States Old‐fashioned bump hunt in Mee distribuon: CDF: 5.7‐1 ‐Z producon and decay into ee/µµ precisely measured 2 D0: 5.4‐1 ‐Lepton ID/Reco and Trigger efficiencies high and very well understood = 960 GeV/c ‐Background low and easily determined (QCD fakes) Mee ‐Clean events PLB 695, 88 (2011) CDF Public Note 10405 event ever recorded! dilepton the highest DIS2011 C.
    [Show full text]