Bright Prospects for Tevatron Run II

Total Page:16

File Type:pdf, Size:1020Kb

Bright Prospects for Tevatron Run II INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 Bright prospects for Tevatron Run II JLAB Virginia laboratory delivers terahertz light p6 ^^^J Modular and expandable power supplies WÊ H Communications via TCP/IP içert. n_.___910S.CAEN '^^^*aBOKS^^^^ • ÊÊÊ WÊÊÊSêSê É TÏSjj à OPC Server to ease integration in DCS J Directly interfaced to JCOP Framework p " j^pj ^ ^^^^ Wa9neticFie,dand^ ^^HTJHj^^^^^^^^^^^^^^^^^^^^^^E' ' tfHl far IM Éfefi-*il * CAEN: your largest choice of HV & LV )^ H MULTICHANNEL POWER SUPPLIES CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editors James Gillies and Christine Sutton CERN, 1211 Geneva 23, Switzerland Email [email protected] Fax+41 (22) 782 1906 Web cerncourier.com COURIER Advisory Board R Landua (Chairman), F Close, E Lillest0l, VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 H Hoffmann, C Johnson, K Potter, P Sphicas Laboratory correspondents: Argonne National Laboratory (US): D Ayres Brookhaven, National Laboratory (US): PYamin Cornell University (US): D G Cassel DESY Laboratory (Germany): Ilka Flegel, P Waloschek Fermi National Accelerator Laboratory (US): Judy Jackson GSI Darmstadt (Germany): G Siegert INFN (Italy): A Pascolini IHEP, Beijing (China): Qi Nading Jefferson Laboratory (US): S Corneliussen JINR Dubna (Russia): B Starchenko KEK National Laboratory (Japan): A Maki Lawrence Berkeley Laboratory (US): Christine Celata Los Alamos National Laboratory (US): C Hoffmann CERN focuses on LHCp5 TRIUMF builds for the future p30 Science meets art p44 NIKHEF Laboratory (Netherlands): P Mulders Novosibirsk Institute (Russia): S Eidelman Orsay Laboratory (France): Anne-Marie Lutz PSI Laboratory (Switzerland): P-R Kettle News 5 Rutherford Appleton Laboratory (UK): Jacky Hutchinson Saclay Laboratory (France): Elisabeth Locci CERN Council sets the stage for the LHC. Records tumble at KEKB and IHEP, Serpukhov (Russia): Yu Ryabov Belle. J Lab generates high-power terahertz light. DESY and SLAC Stanford Linear Accelerator Center (US): N Calder id TRIUMF Laboratory (Canada): M K Craddock agree to collaborate on X-ray free-electron laser development. Superkamiokande resumes operation. J-PARC project is inaugurated. Produced for CERN by Institute of Physics Publishing Ltd LANL develops bespoke cavities for low-energy applications. Canadians Institute of Physics Publishing Ltd, Dirac House, Temple Back, L Bristol BS16BE, UK set record for long-distance data transfer. Karlsruhe Grid computing Tel. +44 117 929 7481 centre is inaugurated. UK boosts technology transfer support. ns Email [email protected] Web iop.org 11 Publishing director Richard Roe Physicswatch Publisher Jo Nicholas Art director Andrew Giaquinto Astrowatch 12 Senior production editor Kerry Harding Technical illustrator Alison Tovey Advertising manager Chris Thomas Features Deputy advertising manager/Display sales Jayne Purdy Looking forward to physics at Tevatron Run II 13 Recruitment sales Ed Jost and Debra Wills Advertisement production Katie Graham, Joanne Scriven CDF and DO spokesmen paint an enticing picture Product manager Laura Serratrice-Thomas Supersymmetry reviewed from the past to the future 19 Advertising Chris Thomas, Jayne Purdy, Ed Jost or Debra Wills Jan Louis and Peter Zerwas report from SUSY02 Tel. +44 117 930 1031 Email [email protected] Radiation hard silicon detectors lead the way 23 Fax+44 117 930 1178 Cinzia DaVia' describes recent detector advances General distribution Jacques Dallemagne, CERN, 1211 Geneva 23, Switzerland. Email [email protected] In certain countries, to request copies or to make address ASACUSA measures microwave transition in antiprotonic helium 27 changes, contact: John Eades homes in on fundamental symmetries China Chen Huaiwei, Institute of High-Energy Physics, PO Box 918, Beijing, People's Republic of China Germany Gabriela Heessel orVeronika Werschner, DESY, TRIUMF: the home of Canadian subatomic physics 3300 Notkestr. 85,22603 Hamburg 52. Email [email protected] There's more than mesons on offer at the Vancouver laboratory Italy Loredana Rum or Anna Pennacchietti, INFN, Casella Postale 56,00044 Frascati, Roma UK Mark Swaisland, CLRC, Daresbury Laboratory, Keckwick Lane, In a spin at Brookhaven 3333 Daresbury, Warrington WA4 4AD. Email [email protected] Yousef Makdisi and Roderich Keller report from SPIN2002 US/Canada Published by Cern Courier, 6N246 Willow Drive, St Charles, IL 60175. Periodical postage paid in St Charles, IL. Fax 630 377 1569. Email [email protected]. Postmaster: Send CERN summer experience benefits US students 37 address change to: Creative Mailing Services, PO Box 1147, Suzanne Harvey reviews US research experience programme St Charles, IL 60174 Published by European Organization for Nuclear Research, CERN, People 40 1211 Geneva 23, Switzerland. Tel. +41 (22) 767 6111 Telefax+41 (22) 767 65 55 Recruitment 49 Printed by Warners (Midlands) pic, Bourne, Lincolnshire, UK Bookshelf 55 © 2003 CERN 58 ISSN 0304-288X Viewpoint Cover: This event display shows jets recorded in the DO detector at Fermilab's Tevatron. Both the DO and CDF collaborations have upgraded their detectors to make the most of Tevatron Run II. The collider is now performing well in excess of its Run I best, and is delivering an increased energy of 1.96 TeV. A recent review took a close look at the enticing physics in store. (pl3). CERN Courier January/February 2003 3 industries ELECTRICAL FEEDTHROUGHS for vacuum applications V Helium leak rate: <5 x 1CT9 mbar.i/s at 10"9 mbar V Available in D-Subminiature and circular styles V Flange assemblies per customer specification v Standard termination is a male to female feedthrough - board mount terminations and flying lead varieties available upon request JVvvw.connectpoî Positronic Europe Positronic USA Audi, France Springfield, Missouri 05 62 63 44 91 (800) 641-4054 [email protected] [email protected] (UN SCIENCE HMD MATHS FOR A CHILD YOU KNOW! he magazines provide children with essential knowledge and exam tips in maths and science as well as encouraging enjoyment and enthusiasm for these sub­ Tjects. They reflect the National Curriculum across all topics and are written by the Institute of Physics Educational Publishing editorial team along with well known con­ tributors such as Johnny Ball, David Bellamy, Nick Arnold, Kjartan Poskitt, and Blue Peter's Anton Vamplew and Joe Inglis. There are 6 issues of each magazine per year and every one comes with a bit of fun in the form of a free gift with ideas for experi­ ments and things to do with it. Ages 7-11KS2 level Ages 11-14, KS3 level Young Scientist (science) SPECIAL IOP MEMBER DISCOUNT - 25% OFF NORMAL PRICES! SciTec (science) Mad Maths (maths) Crunch (maths) Normal subscription rates: IOP member rates: Single magazine 1 year £19.99 Single magazine 1 year £14.99 il.ii M • Single magazine 2 years £32.98 Single magazine 2 years £24.73 SHAPE, x Double sub 1 year £32.98 Double sub 1 year £24.73 as?*' - - FOOTV Double sub 2 years £59.98 Double sub 2 years £44.98 FACTS ;|\ GET YOUR * f \ If you would like to subscribe for your child(ren)/grandchild(ren) etc visit FAIR SHARE £ http://www.kidsmagazines.com/or contact us on 01938 559111. Please use PW1 as your gift voucher code to obtain your 25% discount. HOUSE «KM j|M§ î|§ HORRORS MM* All our products are designed to educate as well as entertain. sssa Ê&ÂÈ PLUS.. Why not check out our website for more great science and maths products. * Overseas orders, please contact us for postage costs. NEWS CERN CERN Council sets the stage for the LHC The CERN Council has nominated Robert states. India has been an active partner Aymar, director of the International for many years, and in the December Thermonuclear Experimental Reactor meeting, Council granted the country (ITER), to succeed Luciano Maiani as observer status. In the past, India has the laboratory's director-general, to take contributed equipment and technical office on 1 January 2004. Aymar, who teams to LEP, the PS injector complex will serve a 5 year term, will oversee the and fixed-target experiments. This effort start-up of CERN's current major project, was formalized in a co-operation agree­ the Large Hadron Collider (LHC) in ment in 1991, extended in 2001 fora 2007. He was previously with the French further decade. Then, in the framework Atomic Energy Commission (CEA), and of the 199ff protocol signed with the directed the Tore Supra - one of the Indian Department of Atomic Energy, world's largest tokamaks, based on The LHC magnet test hall - one area where Indian India became one of the first non- superconducting toroidal magnets- scientists work at CERN. member states to make significant from its design in 1977 through to its contributions to the LHC. Indian scien­ operation in 1988. He is familiar with the Council secured the future of the LHC project tists are also valued members of the ALICE challenges presented by the LHC project, as by unanimously endorsing the new Baseline and CMS collaborations, and Indian IT exper­ he chaired the External Review Committee Plan for 2003-2010, based on a revision of tise is being put to good use in GRID that was setup in December 2001 in the 1996 financial framework for the LHC, computing projects. response to the increased cost to completion which confirms the target of commissioning Recognizing the increasingly global nature of the LHC. Commenting on his appointment, the LHC in April 2007. Most of CERN's of particle physics, and CERN in particular, Aymar said: "I am very honoured by this deci­ resources will be committed to the project, Council also agreed to create an associate sion, and I thank the Council members for the leaving only a very limited non-LHC status for non-European states that wish to confidence put in me.
Recommended publications
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • Supersymmetry Searches at the Tevatron
    SUPERSYMMETRY SEARCHES AT THE TEVATRON For CDF and DØ collaborations R. Demina Department of Physics and Astronomy, University of Rochester, Rochester, USA, 14627 CDF and DØ collaborations analyzed up to 200 pb-1 of the delivered data in search for different supersymmetry signatures, so far with negative results. We present results on searches for chargino and neutralino associated production, squarks and gluinos, sbottom quarks, gauge mediated SUSY breaking and long lived heavy particles. Supersymmetry1 is a popular extension of the Standard Model originally suggested over 25 years ago. It postulates the symmetry between fermionic and bosonic degrees of freedom. As a result a variety of hypothetical particles is introduced. With presently available experimental data physicists were able to prove that if supersymmetric particles exist they must be heavier than their Standard Model partners2. In other words the Supersymmetry is broken. One possible exception is supersymmetric top quark (stop), which still has a chance to be lighter or of the same mass as top quark. With 2-4 fb-1 of data Tevatron experiments will be able to extend the limit on stop mass above that of top quark or discover it and thus establish the Supersymmetry3. Theory suggests several possible scenarios of Supersymmetry breaking mediated by gravitational or gauge interactions. In gravity mediated scenarios the number of free parameters in the model is reduced to five because of the unification of masses and couplings imposed at the grand unification scale. These parameters are M0 (M½) – masses of all bosons (fermions) at GUT scale, A0- trilinear coupling and µ0 – something Higgs and tan(β) – ratio of vacuum expectations of the Higgs doublet.
    [Show full text]
  • Subnuclear Physics: Past, Present and Future
    Subnuclear Physics: Past, Present and Future International Symposium 30 October - 2 November 2011 – The purpose of the Symposium is to discuss the origin, the status and the future of the new frontier of Physics, the Subnuclear World, whose first two hints were discovered in the middle of the last century: the so-called “Strange Particles” and the “Resonance #++”. It took more than two decades to understand the real meaning of these two great discoveries: the existence of the Subnuclear World with regularities, spontaneously plus directly broken Symmetries, and totally unexpected phenomena including the existence of a new fundamental force of Nature, called Quantum ChromoDynamics. In order to reach this new frontier of our knowledge, new Laboratories were established all over the world, in Europe, in USA and in the former Soviet Union, with thousands of physicists, engineers and specialists in the most advanced technologies, engaged in the implementation of new experiments of ever increasing complexity. At present the most advanced Laboratory in the world is CERN where experiments are being performed with the Large Hadron Collider (LHC), the most powerful collider in the world, which is able to reach the highest energies possible in this satellite of the Sun, called Earth. Understanding the laws governing the Space-time intervals in the range of 10-17 cm and 10-23 sec will allow our form of living matter endowed with Reason to open new horizons in our knowledge. Antonino Zichichi Participants Prof. Werner Arber H.E. Msgr. Marcelo Sánchez Sorondo Prof. Guido Altarelli Prof. Ignatios Antoniadis Prof. Robert Aymar Prof. Rinaldo Baldini Ferroli Prof.
    [Show full text]
  • CURRICULUM VITAE – Paul D. Grannis April 6, 2021 DATE of BIRTH: June 26, 1938 EDUCATION
    CURRICULUM VITAE { Paul D. Grannis July 15, 2021 EDUCATION: B. Eng. Phys., with Distinction, Cornell University (1961) Ph.D. University of California, Berkeley (1965) Thesis: Measurement of the Polarization Parameter in Proton-Proton Scattering from 1.7 to 6.1 BeV Advisor, Owen Chamberlain EMPLOYMENT: Research Professor of Physics, State Univ. of New York at Stony Brook, 2007 { Distinguished Professor Emeritus, State Univ. of New York at Stony Brook, 2007 { Chair, Department of Physics and Astronomy, Stony Brook, 2002 { 2005 Distinguished Professor of Physics, State Univ. of New York at Stony Brook, 1997 { 2006 Professor of Physics, Stony Brook, 1975 { 1997 Associate Professor of Physics, Stony Brook, 1969 { 1975 Assistant Professor of Physics, Stony Brook, 1966 { 1969 Research Associate, Lawrence Radiation Laboratory, 1965 { 1966 1 AWARDS: Danforth Foundation Fellow, 1961 { 1965 Alfred P. Sloan Foundation Fellow, 1969 { 1971 Fellow, American Physical Society Fellow, American Association for the Advancement of Science Exceptional Teaching Award, Stony Brook, 1992 Exceptional Service Award, U.S. Department of Energy, 1997 John S. Guggenheim Fellowship, 2000 { 2001 American Physical Society W.K.H. Panofsky Prize, 2001 Honorary Doctor of Science, Ohio University, 2009 W. V. Houston Memorial Lectureship, Rice University 2012 Foreign member, Russian Academy of Science, 2016 Co-winner with the members of the DØ Collaboration, European Physical Society High Energy Particle Physics Prize, 2019 2 OTHER ACTIVITIES: Visiting Scientist, Rutherford
    [Show full text]
  • CERN Inaugurates LHC Cyrogenics
    FACES AND PLACES SYMPOSIUM CERN inaugurates LHC cyrogenics Inauguration and ribbon-cutting ceremony of LHC cryogenics by CERN officials: from left, Giorgio Passardi, leader of cryogenics for experiments group; Philippe Lebrun, head of the accelerator Members of the CERN cryogenic groups in front of the Globe of technology department; Giorgio Brianti, founder of the LHC Science and Innovation, where the symposium took place. (Globe project; Lyn Evans, LHC project leader and Laurent Tavian, leader conception T Buchi, Charpente Concept and H Dessimoz, Group H.) of the cryogenics for accelerators group. The beginning of June saw the start of a coils operating at 1.9 K. Besides enhancing Tennessee. Although the commissioning new phase at the LHC project, with the the performance of the niobium-titanium work is far from finished, the cyrogenics inauguration of LHC cryogenics. This was superconductor, this temperature regime groups at CERN felt that after 10 years of marked with a symposium in the Globe makes use of the excellent heat-transfer construction it was now a good time to of Science and Innovation attended by properties of helium in its superfluid state. celebrate, organizing the Symposium for the 178 representatives of the research The design for the LHC cryogenics had to Inauguration of LHC Cryogenics that took institutes involved and industrial partners. incorporate both newly ordered and reused place on 31 May-1 June at CERN's Globe of It also coincided with the stable low- refrigeration plant from LEP operating Science and Innovation. After an inaugural temperature operation of the cryogenic plant at 4.5 K – together with a second stage address by CERN’s director-general, for sector 7–8, the first sector to be cooled operating at 1.9 K – in a system that could Robert Aymar, the programme included down (CERN Courier May 2007 p5).
    [Show full text]
  • CERN Courier – Digital Edition Welcome to the Digital Edition of the November 2018 Issue of CERN Courier
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 8 N UMBER 9 N OVEMBER 2 0 1 8 CERN Courier – digital edition Welcome to the digital edition of the November 2018 issue of CERN Courier. Physics through Explaining the strong interaction was one of the great challenges facing theoretical physicists in the 1960s. Though the correct solution, quantum photography chromodynamics, would not turn up until early the next decade, previous attempts had at least two major unintended consequences. One is electroweak theory, elucidated by Steven Weinberg in 1967 when he realised that the massless rho meson of his proposed SU(2)xSU(2) gauge theory was the photon of electromagnetism. Another, unleashed in July 1968 by Gabriele Veneziano, is string theory. Veneziano, a 26-year-old visitor in the CERN theory division at the time, was trying “hopelessly” to copy the successful model of quantum electrodynamics to the strong force when he came across the idea – via a formula called the Euler beta function – that hadrons could be described in terms of strings. Though not immediately appreciated, his 1968 paper marked the beginning of string theory, which, as Veneziano describes 50 years later, continues to beguile physicists. This issue of CERN Courier also explores an equally beguiling idea, quantum computing, in addition to a PET scanner for clinical and fundamental-physics applications, the internationally renowned Beamline for Schools competition, and the growing links between high-power lasers (the subject of the 2018 Nobel Prize in Physics) and particle physics. To sign up to the new-issue alert, please visit: cerncourier.com/cws/sign-up.
    [Show full text]
  • CMB-S4 Workshop SLAC Feb 2017
    Cosmology with CMB-S4 Workshop DOE/NSF Project Experience Key Ingredients to Success SLAC National Accelerator Laboratory February 27, 2017 Jim Yeck Outline • Personal Experience • DOE Office of Science (SC) Experience - Projects after the Superconducting Super Collider - DOE SC management perspectives • NSF Large Project Experience - IceCube - Large Hadron Collider Experiments • Satisfying Needs of Project Stakeholders • Next Steps 2 My projects Cost/Circa Infrastructure Project Purpose for CD-3 Funding Role Compact Ignition Tokamak (CIT) at Fusion Energy $330M DOE Acting Project Princeton Plasma Physics Lab Science 1988 DOE Manager Relativistic Heavy Ion Collider $600M DOE Project (RHIC) at Brookhaven Lab (BNL) Nuclear Physics 1991 DOE + NSF + Int Manager US Large Hadron Collider (USLHC) High Energy $530M DOE/NSF Project In-kind delivered to CERN Physics 1998 DOE & NSF Director IceCube Neutrino Observatory at Particle $300M U of Wisconsin -– South Pole Astrophysics 2005 NSF + Int Project Director National Synchrotron Light $900M BNL - Deputy Source II at BNL Photon Source 2008 DOE + Other Project Director Deep Underground Science and Physics, Biology, $750M U of Cal – Associate Engineering Laboratory (DUSEL) and Engineering 2010 NSF + Private Project Director European Spallation Source (ESS) $2,500M ESS ERIC – Director in Sweden Neutron Source 2014 European States General & CEO 3 Key Ingredients to success Facility is a priority of the science community! Strong funding agency commitments and host role Project leaders viewed as enabling
    [Show full text]
  • The Discovery of the Higgs Boson at the LHC
    Chapter 6 The Discovery of the Higgs Boson at the LHC Peter Jenni and Tejinder S. Virdee 6.1 Introduction and the Standard Model The standard model of particle physics (SM) is a theory that is based upon principles of great beauty and simplicity. The theory comprises the building blocks of visible matter, the fundamental fermions: quarks and leptons, and the fundamental bosons that mediate three of the four fundamental interactions; photons for electromag- netism, the W and Z bosons for the weak interaction and gluons for the strong interaction (Fig. 6.1). The SM provides a very successful description of the visible universe and has been verified in many experiments to a very high precision. It has an enormous range of applicability and validity. So far no significant deviations have been observed experimentally. The possibility of installing a proton-proton accelerator in the LEP tunnel, after the e+e− programme, was being discussed in the 1980’s. At the time there were many profound open questions in particle physics, and several are still present. In simple terms these are: what is the origin of mass i.e. how do fundamental particles acquire mass, and why do they have the masses that they have? Why is there more matter than anti-matter? What is dark matter? What is the path towards unification of all forces? Do we live in a world with more space-time dimensions than the familiar four? The LHC [1, 2] was conceived to address or shed light on these questions. P. Jenni CERN, Geneva, Switzerland Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany T.
    [Show full text]
  • Three Extra Mirror Or Sequential Families: a Case for Heavy Higgs and Inert Doublet
    Three Extra Mirror or Sequential Families: a Case for Heavy Higgs and Inert Doublet Homero Mart´ınez,1 Alejandra Melfo,2, 3 Fabrizio Nesti,4 and Goran Senjanovi´c2 1CEA, Saclay, DSM-IRFU-SPP, France 2ICTP, Trieste, Italy 3U. de Los Andes, M´erida, Venezuela 4U. di Ferrara, Ferrara, Italy (Dated: October 24, 2018) We study the possibility of the existence of extra fermion families and an extra Higgs doublet. We find that requiring the extra Higgs doublet to be inert leaves space for three extra families, allowing for mirror fermion families and a dark matter candidate at the same time. The emerging scenario is very predictive: it consists of a Standard Model Higgs boson, with mass above 400 GeV, heavy new quarks between 340 and 500 GeV, light extra neutral leptons, and an inert scalar with a mass below MZ . PACS numbers: 14.65.Jk, 12.60.Fr, 14.60.Hi, 14.60.St Introduction. It may not be well known that the idea with regard to high precision analysis they behave exactly of parity restoration in weak interactions is as old as as ordinary fermions, and thus a reader who is uncom- the suggestion of its breakdown. In their classic paper, fortable with the above setbacks can view our study as Lee and Yang [1] proposed the existence of what we will referring to the more general question of whether the SM call mirror fermions, so as to make the world left-right can host three (or more) extra families. symmetric at high energies. By this they meant another If one defines the SM by its structure, i.e.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Tevatron Accelerator Physics and Operation Highlights A
    FERMILAB-CONF-11-129-APC TEVATRON ACCELERATOR PHYSICS AND OPERATION HIGHLIGHTS A. Valishev for the Tevatron group, FNAL, Batavia, IL 60510, U.S.A. Abstract Table 1: Integrated luminosity performance by fiscal year. The performance of the Tevatron collider demonstrated FY07 FY08 FY09 FY10 continuous growth over the course of Run II, with the peak luminosity reaching 4×1032 cm-2 s-1, and the weekly Total integral (fb-1) 1.3 1.8 1.9 2.47 -1 integration rate exceeding 70 pb . This report presents a review of the most important advances that contributed to Until the middle of calendar year 2009, the luminosity this performance improvement, including beam dynamics growth was dominated by improvements of the antiproton modeling, precision optics measurements and stability production rate [2], which remains stable since. control, implementation of collimation during low-beta Performance improvements over the last two years squeeze. Algorithms employed for optimization of the became possible because of implementation of a few luminosity integration are presented and the lessons operational changes, described in the following section. learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects. COLLIDER RUN II PERFORMANCE Tevatron collider Run II with proton-antiproton collisions at the center of mass energy of 1.96 TeV started in March 2001. Since then, 10.5 fb-1 of integrated luminosity has been delivered to CDF and D0 experiments (Fig. 1). All major technical upgrades of the accelerator complex were completed by 2007 [1].
    [Show full text]
  • A Half-Century with Solar Neutrinos*
    REVIEWS OF MODERN PHYSICS, VOLUME 75, JULY 2003 Nobel Lecture: A half-century with solar neutrinos* Raymond Davis, Jr. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA (Published 8 August 2003) Neutrinos are neutral, nearly massless particles that neutrino physics was a field that was wide open to ex- move at nearly the speed of light and easily pass through ploration: ‘‘Not everyone would be willing to say that he matter. Wolfgang Pauli (1945 Nobel Laureate in Physics) believes in the existence of the neutrino, but it is safe to postulated the existence of the neutrino in 1930 as a way say that there is hardly one of us who is not served by of carrying away missing energy, momentum, and spin in the neutrino hypothesis as an aid in thinking about the beta decay. In 1933, Enrico Fermi (1938 Nobel Laureate beta-decay hypothesis.’’ Neutrinos also turned out to be in Physics) named the neutrino (‘‘little neutral one’’ in suitable for applying my background in physical chemis- Italian) and incorporated it into his theory of beta decay. try. So, how lucky I was to land at Brookhaven, where I The Sun derives its energy from fusion reactions in was encouraged to do exactly what I wanted and get paid for it! Crane had quite an extensive discussion on which hydrogen is transformed into helium. Every time the use of recoil experiments to study neutrinos. I imme- four protons are turned into a helium nucleus, two neu- diately became interested in such experiments (Fig.
    [Show full text]