Astrobiology: Seeking Evidence of Life Beyond Earth What Is Astrobiology?

Total Page:16

File Type:pdf, Size:1020Kb

Astrobiology: Seeking Evidence of Life Beyond Earth What Is Astrobiology? ASTROBIOLOGY: SEEKING EVIDENCE OF LIFE BEYOND EARTH WHAT IS ASTROBIOLOGY? Astrobiology is the study of the origin, evolution, and prevalence of life in the universe. Is life an inevitable consequence of cosmic evolution? How does a planet become a living world with a global biosphere? Are we alone in our corner of the Milky Way, or is life common? These are the questions UC Santa Cruz astrobiologists are working to answer. Are we alone in the universe? UC Santa Cruz’s Astrobiology Initiative seeks new answers to this ancient question. By probing how life forms, identifying the markers life creates, and observing our local astronomical neighborhood, astrobiology brings a 21st-century approach to a timeless puzzle: What processes give rise to complexity and self-awareness in the universe? “The search for We may soon know if we have With faculty who are world leaders interstellar neighbors. in the study of exoplanets, the evidence of life NASA’s recently completed Kepler origin of life, planetary science, beyond Earth Mission catalyzed a global scientific and instrument development, pivot toward the search for life UC Santa Cruz Astrobiology will is neither pipe beyond Earth, and UC Santa Cruz continue its groundbreaking dream nor stands at the forefront of the field. research while training diverse new generations of astrobiologists. daydream but Built to find planets outside the solar system, or exoplanets, Kepler This new field calls for collaboration, rather an open found that there are likely billions of and UC Santa Cruz has a tradition road to the end planets in our galaxy with the basic of crossing boundaries between conditions required to support life as research disciplines. The humanities, of our cosmic we know it. social sciences, and the arts will play central roles, engaging the public loneliness.” In the next decade, spacecraft will in our discoveries and their societal visit the watery worlds of our solar – Natalie Batalha, implications. system able to detect complex UC Santa Cruz organic molecules. The most This may be the dawn of a scientific Professor of Astronomy powerful telescopes in history will revolution, and you’re invited to take and Astrophysics, look through the atmospheres of part. UC Santa Cruz donors will former science lead exoplanets for gasses created by be critical to what happens next, of NASA’s living organisms. enabling scientists to commit to Kepler Mission new collaborations and providing tools and resources to accelerate their work. IT’S ALREADY HAPPENING HERE From the study of the forces that form stars and planets, to the search for exoplanets, to understanding what markers of life we can see across the galaxy, UC Santa Cruz researchers are already at work building the astrobiology field: • tracing the history of life on Earth • pushing ever closer to understanding how life’s building blocks form • documenting the processes that shape planets in the solar system • filling in the whole picture of planets beyond the solar system • building the instruments the world uses to explore the cosmos Origin of life WE BUILD THE TOOLS A team led by David Deamer has synthesized RNA-like molecules by We build the technology that will make this search possible. reproducing the conditions UC Santa Cruz is home to the world-class instrumentation in which life might form in facilities of UCO/Lick Observatories and its Center for hot springs. This challenges the consensus that life on Adaptive Optics. Our inventions help observatories around Earth originated near deep the globe see farther and clearer. We have a long record sea volcanic vents—and could be a step toward of overcoming the challenges involved with making identifying the type of observations of objects light years away. planetary surface astrobiol- ogists will look for. PIONEERS IN ASTROBIOLOGY Professor Natalie Batalha A global leader in astrobiology, Batalha oversaw the scientific work of the Kepler Mission. Under her direction Kepler exponentially expanded the num- ber of known exoplanets and the estimate of potentially habitable planets— sparking the worldwide acceleration of astrobiology. Batalha led the analysis that yielded the discovery in 2011 of Kepler 10b, the first confirmed rocky planet outside our solar system. In 2017, Time magazine named her one of the 100 most influential people on Earth. Batalha, who earned her Ph.D. in astrophysics at UC Santa Cruz, left NASA to establish and direct the UC Santa Cruz Astrobiology Initiative. Professor Ruth Murray-Clay Professor Jonathan Fortney Professor Zac Zimmer The inaugural holder of the Gunderson An expert on the atmospheres and An accomplished analyst of the Chair in Theoretical Astrophysics, interiors of giant planets, Fortney interplay between scientific discov- Murray-Clay’s influential investigations directs the UC Santa Cruz–based ery, science fiction, and world history, of planetary systems and international exoplanet collaboration, Zimmer’s current focus is on literary atmospheres have earned widespread the Other Worlds Laboratory. He has representations of the 16th-century recognition, including the American helped NASA interpret spacecraft conquest of the Americas–Earth’s Astronomical Society’s Helen B. observations of Saturn and Jupiter as most relevant historical experience Warner Prize for Astronomy. well as Kepler’s exoplanet data. of an initial encounter. Emeritus Physical and Biological Sciences Dean Frank Drake created the Drake Equation to represent of the challenges in predicting how hard it would be to detect extraterrestrial civilizations—five decades later, it continues to inspire the search for life. The Drake equation Kepler produced strong evidence regarding the percentage of stars with planets, f(p), and the portion that might be habitable, n(e). * = x x x x x x N R fp ne fl fi fc L Number of Rate of Fraction Number of Fraction Fraction of Fraction of Length of technologi- formation of those planets, per of suitable life-bearing civilizations time such cally of stars in stars with solar system, planets on planets on that develop civilizations advanced the galaxy planetary with an which life which a technology release civilizations systems environment actually intelligent that releases detectable in the Milky suitable appears life emerges detectable signals into Way galaxy for life signs of their space existence into space UC SANTA CRUZ ASTROBIOLOGY The James Webb Space Telescope is scheduled to launch in 2021, starting a new era in the study of exoplanet atmospheres. On Earth, a new generation of 30-meter reflector telescopes with the potential to find evidence of life on planets orbiting some of the closest stars will begin operating in the next decade. Engineers are hard at work planning the space missions beyond Webb, equipped to detect the chemical signatures of life beyond the solar system. Closer to home, robotic spacecraft Diversifying the sciences will further explore Mars as well as Diverse perspectives lead to Jupiter’s moon Europa and Saturn’s greater innovation. UC Santa moons Titan and Enceladus, seeking Cruz established the nation’s signs of life. first endowed faculty position With influential achievements in dedicated to making astronomy exoplanet science, life sciences, and more inclusive. Astrobiology is planetary science, UC Santa Cruz committed to achieving this researchers have made many of the vision through greater discoveries that established this field. accessibility, community building, diverse mentorship, As new tools expand the possibilities of Reporting the work inquiry, UC Santa Cruz Astrobiology is and inclusive practices. The UC Santa Cruz Science Communi- ensured continued leadership. Connecting lessons to cation program is world renowned for Training the next generation of sustainability on Earth training top science journalists. Alumni astrobiologists Astrobiology will teach us the limits include reporters and editors for NPR, National Geographic, Ars Technica, The search for life is multigenerational. of planetary habitability, informing us and Scientific American. UC Santa The students we train today will be about our own biosphere and Earth’s Cruz Astrobiology’s first fellow will the pioneers of tomorrow. fragility and uniqueness. Our closest be a Science Communication student UC Santa Cruz will tune and focus its planetary neighbors appear lifeless. In who will further this program and outstanding, cutting-edge curriculum its low-pressure, low-surface-gravity communicate astrobiology findings and create new courses, building an environment, Mars has been unable to the public. interdisciplinary degree program in to hold onto surface liquid water astrobiology. Graduate student while our sister planet, Venus, is hot Science and art fellowships will create opportunities enough to melt lead on its surface. As we work to understand the limits At the nexus of science and art is for thesis research co-mentored by wonder. Understanding the meaning faculty in multiple departments. of planetary habitability, we will learn about the sustainability of life here on of the science and conveying it to a Sharing discoveries planet Earth. general audience will demand creative forms of expression. Artists in resi- Public lectures and engaging events The ethics of exploration dence will work closely with scientists will provide opportunities for audiences to share the significance of their to connect with researchers and their What does humanity’s history with findings effectively and accurately. findings and to share in the achievements “colonization” teach us about our and progress of the field. future in space exploration? How can Truly interdisciplinary we be good planetary stewards for Earth, as well as other planets we Astrobiology at UC Santa Cruz might visit? The UC Santa Cruz Center brings together scientists, scholars, for Public Philosophy excels at unpack- and artists. As we grow humanity’s ing and sparking discussion on human- knowledge, we will spark conversa- kind’s most difficult questions. tions through which society evolves. Life in our solar system? In the next decade new robotic missions will launch toward Mars, Jupiter’s moon Europa, and Saturn’s moon Titan.
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • UC Santa Cruz Other Recent Work
    UC Santa Cruz Other Recent Work Title Robert B. Stevens: UCSC Chancellorship, 1987-1991 Permalink https://escholarship.org/uc/item/95h8k9w0 Authors Stevens, Robert Jarrell, Randall Regional History Project, UCSC Library Publication Date 1999-05-21 Supplemental Material https://escholarship.org/uc/item/95h8k9w0#supplemental eScholarship.org Powered by the California Digital Library University of California Introduction The Regional History Project conducted six interviews with UCSC Chancellor Robert B. Stevens during June and July, 1991, as part of its University History series. Stevens was appointed the campus’s fifth chancellor by UC President David P. Gardner in July, 1987, and served until July, 1991. He was the second UCSC chancellor (following Chancellor Emeritus Robert L. Sinsheimer) recruited from a private institution. Stevens was born in England in 1933 and first came to the United States when he was 23. He was educated at Oxford University (B.A., M.A., B.C.L., and D.C.L.) and at Yale University (L.L.M.) and became an American citizen in 1971. An English barrister, Stevens has strong research interests in legal history and education in the United States and England. He served as chairman of the Research Advisory Committee of the American Bar Foundation, has written a half dozen books on legal history and social legislation, and numerous papers on American legal scholarship and comparative Anglo-American legal history. Prior to his appointment at UCSC he served for almost a decade as president of Haverford College from 1978 until 1987. From 1959 to 1976 he was a professor of law at Yale University.
    [Show full text]
  • 2007 February
    ARTICLE .1 Macro-Perspectives beyond the World System Joseph Voros Swinburne University of Technology Australia Abstract This paper continues a discussion begun in an earlier article on nesting macro-social perspectives to also consider and explore macro-perspectives beyond the level of the current world system and what insights they might reveal for the future of humankind. Key words: Macrohistory, Human expansion into space, Extra-terrestrial civilisations Introduction This paper continues a train of thought begun in an earlier paper (Voros 2006) where an approach to macro-social analysis based on the idea of "nesting" social-analytical perspectives was described and demonstrated (the essence of which, for convenience, is briefly summarised here). In that paper, essential use was made of a typology of social-analytical perspectives proposed by Johan Galtung (1997b), who suggested that human systems could be viewed or studied at three main levels of analysis: the level of the individual person; the level of social systems; and the level of world systems. Distinctions can be made between different foci of study. The focus may be on the stages and causes of change through time (termed diachronic), or it could be at some specific point in time (termed synchronic). As well, the focus may be on a specific single case (termed idiographic), in contrast to seeking regularities, patterns, or generalised "laws" (termed nomo- thetic). In this way, there are four main types of perspectives found at any particular level of analy- sis. This conception is shown here in slightly adapted form in Table 1.1 Journal of Futures Studies, February 2007, 11(3): 1 - 28 Journal of Futures Studies Table 1: Three Levels of Social Analysis Source: Adapted from Galtung (1997b).
    [Show full text]
  • Carl Sagan's Groovy Cosmos
    CARL SAGAN’S GROOVY COSMOS: PUBLIC SCIENCE AND AMERICAN COUNTERCULTURE IN THE 1970S By SEAN WARREN GILLERAN A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF ARTS IN HISTORY WASHINGTON STATE UNIVERSITY Department of History MAY 2017 © Copyright by SEAN WARREN GILLERAN, 2017 All Rights Reserved © Copyright by SEAN WARREN GILLERAN, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of SEAN WARREN GILLERAN find it satisfactory and recommend that it be accepted. _________________________________ Matthew A. Sutton, Ph.D., Chair _________________________________ Jeffrey C. Sanders, Ph.D. _________________________________ Lawrence B. A. Hatter, Ph.D. ii ACKNOWLEDGEMENT This thesis has been years in the making and is the product of input from many, many different people. I am grateful for the support and suggestions of my committee—Matt Sutton, Jeff Sanders, and Lawrence Hatter—all of whom have been far too patient, kind, and helpful. I am also thankful for input I received from Michael Gordin at Princeton and Helen Anne Curry at Cambridge, both of whom read early drafts and proposals and both of whose suggestions I have been careful to incorporate. Catherine Connors and Carol Thomas at the University of Washington provided much early guidance, especially in terms of how and why such a curious topic could have real significance. Of course, none of this would have happened without the support of Bruce Hevly, who has been extraordinarily generous with his time and whose wonderful seminars and lectures have continued to inspire me, nor without Graham Haslam, who is the best teacher and the kindest man I have ever known.
    [Show full text]
  • Solar System Simulator NASA SUMMER of INNOVATION
    National Aeronautics and Space Administration Solar System Simulator NASA SUMMER OF INNOVATION UNIT Earth and Space Science – Year of the Solar System DESCRIPTION This online software generates views of GRADE LEVELS the bodies of our planetary system at any th th 7 – 9 date from any artificial or natural point of observation. CONNECTION TO CURRICULUM Science and technology OBJECTIVES TEACHER PREPARATION TIME Students will: 1 hour • Investigate how to determine the relative position of the sun, LESSON TIME NEEDED planets, and a number of 30 minutes Complexity: Basic planetary spacecraft using a simple web-based program • Explore how planets change their position in space over time NATIONAL STANDARDS National Science Education Standards (NSTA) Science and Technology Standards • Abilities of technological design • Understanding about science and technology Earth and Space Science • Earth in the solar system • Objects in the sky Common Core State Standards for Mathematics (NCTM) Number and Operations in Base Ten • Perform operations with multi-digit whole numbers and with decimals to hundredths Operations and Algebraic Thinking • Generate and analyze patterns ISTE NETS and Performance Indicators for Students (ISTE) Creativity and Innovation • Use models and simulations to explore complex systems and issues. Technology Operations and Concepts • Understand and use technology systems Aerospace Education Services Project MANAGEMENT MATERIALS Take time to practice with this software. While simple, it offers a • Computer with Internet variety of views with which to become familiar. access On the simulator homepage, a FIELD OF VIEW of 2 will show the inner solar system very nicely. It will be difficult to see the position of ALL the planets at one time.
    [Show full text]
  • Qisar-Alexander-Ollongren-Astrolinguistics.Pdf
    Astrolinguistics Alexander Ollongren Astrolinguistics Design of a Linguistic System for Interstellar Communication Based on Logic Alexander Ollongren Advanced Computer Science Leiden University Leiden The Netherlands ISBN 978-1-4614-5467-0 ISBN 978-1-4614-5468-7 (eBook) DOI 10.1007/978-1-4614-5468-7 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012945935 © Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Bayesian Analysis of the Astrobiological Implications of Life's
    Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications.
    [Show full text]
  • 2017 Journal Impact Factor (JCR)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317604703 2017 Journal Impact Factor (JCR) Technical Report · June 2017 CITATIONS READS 0 12,350 1 author: Pawel Domagala Pomeranian Medical University in Szczecin 34 PUBLICATIONS 326 CITATIONS SEE PROFILE All content following this page was uploaded by Pawel Domagala on 20 June 2017. The user has requested enhancement of the downloaded file. 1 , I , , 1 1 • • I , I • I : 1 t ( } THOMSON REUTERS - Journal Data Filtered By: Selected JCR Year: 2016 Selected Editions: SCIE,SSCI Selected Category Scheme: WoS Rank Full Journal Title Journal Impact Factor 1 CA-A CANCER JOURNAL FOR CLINICIANS 187.040 2 NEW ENGLAND JOURNAL OF MEDICINE 72.406 3 NATURE REVIEWS DRUG DISCOVERY 57.000 4 CHEMICAL REVIEWS 47.928 5 LANCET 47.831 6 NATURE REVIEWS MOLECULAR CELL BIOLOGY 46.602 7 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 44.405 8 NATURE BIOTECHNOLOGY 41.667 9 NATURE REVIEWS GENETICS 40.282 10 NATURE 40.137 11 NATURE REVIEWS IMMUNOLOGY 39.932 12 NATURE MATERIALS 39.737 13 Nature Nanotechnology 38.986 14 CHEMICAL SOCIETY REVIEWS 38.618 15 Nature Photonics 37.852 16 SCIENCE 37.205 17 NATURE REVIEWS CANCER 37.147 18 REVIEWS OF MODERN PHYSICS 36.917 19 LANCET ONCOLOGY 33.900 20 PROGRESS IN MATERIALS SCIENCE 31.140 21 Annual Review of Astronomy and Astrophysics 30.733 22 CELL 30.410 23 NATURE MEDICINE 29.886 24 Energy & Environmental Science 29.518 25 Living Reviews in Relativity 29.300 26 MATERIALS SCIENCE & ENGINEERING R-REPORTS 29.280 27 NATURE
    [Show full text]
  • 51. Astrobiology: the Final Frontier of Science Education
    www.astrosociety.org/uitc No. 51 - Summer 2000 © 2000, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Astrobiology: The Final Frontier of Science Education by Jodi Asbell-Clarke and Jeff Lockwood What (or Whom) Are We Looking For? Where Do We Look? Lessons from Our Past The Search Is On What Does the Public Have to Learn from All This? A High School Curriculum in Astrobiology Astrobiology seems to be all the buzz these days. It was the focus of the ASP science symposium this summer; the University of Washington is offering it as a new Ph.D. program, and TERC (Technical Education Research Center) is developing a high school integrated science course based on it. So what is astrobiology? The NASA Astrobiology Institute defines this new discipline as the study of the origin, evolution, distribution, and destiny of life in the Universe. What this means for scientists is finding the means to blend research fields such as microbiology, geoscience, and astrophysics to collectively answer the largest looming questions of humankind. What it means for educators is an engaging and exciting discipline that is ripe for an integrated approach to science education. Virtually every topic that one deals with in high school science is embedded in astrobiology. What (or Whom) Are We Looking For? Movies and television shows such as Contact and Star Trek have teased viewers with the idea of life on other planets and even in other galaxies. Illustration courtesy of and © 2000 by These fictional accounts almost always deal with intelligent beings that have Kathleen L.
    [Show full text]
  • Editorial Board Member Dr. Akos Kereszturi Journal of Astrobiology
    Journal of Astrobiology and Outreach Dr. Akos Kereszturi Editorial Board member Research Center for Astronomy and Earth Sciences Hungarian Academy of Sciences Hungary Dr. Akos Kereszturi Biography Akos Kereszturi has PhD in geology and working on planetary surface processes and astrobiology, focusing on the analysis of Mars, Europa and analog locations on the Earth. He also works for ESA under the Mars Express project and for NASA Astrobiology Institute in the TDE focus group. Beside research he teaches astrobiology and planetary science at two Hungarian universities, working on to use astrobiology as an interdisciplinary link between natural sciences. As the vice president of the Hungarian Astronomical Association and the national coordinator of the European Association for Astronomy Education he works on the popularization of astronomy and astrobiology, organizing lectures and public demonstrations. As a part time journalist he writes papers for printed journals and online websites Research Interests Ancient wet locations on Mars (morphology, spectral data), possible occurrence of liquid (interfacial) water and brine on Mars today, survival of cyanobacteria in cryptobiotic crust at simulated Mars surface conditions, Mars analog terrains and the survival strategy of extreme organisms there, surface tectonics and possibility of subsurface water migration toward the surface on the satellite Europa, educational methods both for secondary students and at university level, connecting research in astrobiology (related missions) with university courses, Recent Publications 1. How to Size an Exoplanet? A Model Approach for Visualization, Akos Kereszturi, Research Article: Astrobiol Outreach 2013, 1:1 2. Review of Wet Environment Types on Mars with Focus on Duration and Volumetric Issues, Akos Kereszturi.
    [Show full text]
  • Is It the First Use of the Word Astrobiology ? Author
    Title : Is it the first use of the word Astrobiology ? Author : Danielle Briot Adress : Observatoire de Paris 61 avenue de l’Observatoire 75014 Paris France tel : 33(0)1 40 51 22 39 and 33(0)1 45 07 78 57 [email protected] running title : First use of the word Astrobiology ? 1 Abstract The research of life in Universe is a ancient quest that has taken different forms over the centuries. It has given rise to a new science, which is normally referred as Astrobiology. It is interesting to research when this word was used for the first time and when this science developed to represent the search for life in Universe as is done today. There are records of the usage of the word "Astrobiology" as early as 1935, in an article published in a French popular science magazine. Moreover this article is quite remarkable because its portrayal of the concept of the subject is very similar to that considered today. The author of this paper was Ary J. Sternfeld (1905 - 1980), who was ortherwise known as a poorly respected great pioneer of astronautics. We provide a brief description of his life, which was heavily influenced by the tragic events of the 20th century history, from Poland and France to Russia. He was a prolific scientific writer who wrote a number of very successful scientific books and papers. Keywords : History – Pioneers 2 1. Introduction The question of the life in the Universe, in relation with the question of the multiplicity of worlds, is very ancient and probably dates back to Greek philosophers.
    [Show full text]
  • Evolutionary Processes Transpiring in the Stages of Lithopanspermia Ian Von Hegner
    Evolutionary processes transpiring in the stages of lithopanspermia Ian von Hegner To cite this version: Ian von Hegner. Evolutionary processes transpiring in the stages of lithopanspermia. 2020. hal- 02548882v2 HAL Id: hal-02548882 https://hal.archives-ouvertes.fr/hal-02548882v2 Preprint submitted on 5 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HAL archives-ouvertes.fr | CCSD, April 2020. Evolutionary processes transpiring in the stages of lithopanspermia Ian von Hegner Aarhus University Abstract Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms.
    [Show full text]