Dissertation a Phytochemical and Pharmacological Study of Te

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation a Phytochemical and Pharmacological Study of Te CHAPTER 1: GENERAL INTRODUCTION The utilisation of plants in the treatment of certain human diseases is evidence of man’s ingenuity. The contribution of these plants to the therapeutic arsenal in the fight against disease dates back several centuries, and has, to a certain extent, been documented by the ancient Chinese, Indian and North African civilisations. Currently, traditional medicine is widely practiced, especially in developing countries. This is a result of primary health care facilities being unable to manage the number of patients requiring aid, the high cost of Western pharmaceuticals and health care, as well as the fact that traditional health care is highly sought after in terms of certain cultural elements in the lives of these individuals within these societies (Taylor et al ., 2001). In southern Africa, a large proportion of the population still uses traditional remedies. More than 700 plant species are being traded for medicinal purposes throughout South Africa, in the informal medicinal plant market (Dold and Cocks, 2002). This vast usage of and great dependence on traditional plants as the preferred form of health care is aided by the fact that most of these plants are widely available and affordable, and additionally encompasses practices based on the social-cultural norms and religious beliefs. It is evident that, even though scientific advances have been made in our quest to understand the physiology of the body, biotechnology and the treatment of disease, natural products remain a crucial component of the comprehensive health care strategy for the future (Patwardhan, 2005). The World Health Organization (WHO) defines traditional medicine as the “diverse health practices, approaches, knowledge and beliefs incorporating plant-, animal- and/or mineral- based medicines, spiritual therapies, manual techniques and exercises applied singularly or in combination to maintain well-being, as well as to treat, diagnose, or prevent illness”. It is clear, however, that there is a need to validate the information through an organised infrastructure for it to be used as an effective therapeutic means, either in conjunction with existing therapies, or as a tool in novel drug discovery. Traditional medicine utilises biological resources and the indigenous knowledge of traditional plant groups, the latter being conveyed verbally from generation to generation. This is closely linked to the conservation of biodiversity and the related intellectual property rights of indigenous people (Timmermans, 2003). 35 Although it is these traditional medicines that provided the link between medicine and natural products, it was not until the 19 th century that active compounds were isolated and principles of medicinal plants identified (Phillipson, 2001). The Greek physician Dioscorides ( AD 70) compiled an extensive listing of medicinal herbs and their virtues. This was originally written in Greek, and later translated into Latin as De Materia Medica, and remained the authority in medicinal plants for over 1500 years (Mendonça-Filho, 2006). Another Greek physician, Galen ( AD 129-200), devised the pharmacopoeia describing the appearance, properties and use of many plants of his time. It was the discovery of medicines such as those listed in Table 1.1 that sparked an interest in the study of plants as medicinal agents; with the isolation of morphine from opium by Serturner (1805) being the start of natural product chemistry (Patwardhan et al ., 2004). Table 1.1: Drugs derived from plants, their clinical uses and sources (Fabricant and Farnsworth, 2001). Drug Action or clinical use Plant source Atropine Anticholinergic Atropa belladona Colchicine Antitumour, antigout agent Colchicum autumnale Digitoxin Cardiotonic Digitalis purpurea Emetine Emetic, amoebicide Cephaelis ipecacuanha Morphine Analgesic Papaver somniferum Pilocarpine Parasympathomimetic Pilocarpus jaborandi Quinine Antimalarial Cinchona ledgeriana Despite the discovery of natural products from higher plants, the interest of chemists, pharmaceutical scientists and pharmacologists turned to the production of synthetic compounds. In the late 19 th century, research was focused mainly on the modification of natural products, in an attempt to enhance biological activity, to increase selectivity and to decrease toxicity and side effects. Aspirin is one such example and was the earliest of these modified natural products. In more recent years, however, industry has once again turned its interests to natural product research (Phillipson, 2001). This is as a result of the 36 development of drug-resistant micro-organisms, side effects of modern drugs and emerging diseases for which no medicine is available. 1.1 Ethnopharmacological research The study of plants used in traditional medicine requires the effective integration of information on chemical composition of extracts, pharmacological activities of isolated compounds, as well as indigenous knowledge of traditional healers. The acquisition of ethnobotanical information remains an empirical aspect in any such study (Soejarto, 2005). The process of isolating and identifying lead compounds from a complex mixture requires a number of specific resources, including comprehensive knowledge, specialised equipment and skill. The urgency of the discovery of new agents is a result of impenetrable factors that come into play, including the emergence of new killer diseases, known antimicrobial drug-resistance, the inefficiency of synthetic drug discovery and the high cost of bringing to market a single drug. A shift towards natural product research, which is further driven by remarkable advances in plant extract technology, biotechnology and analytical chemistry, is therefore inevitable. There is a great need and ethical obligation to accurately document investigative findings on plants used for health purposes. This will additionally aid in the efficient preservation and conservation of traditional knowledge, thereby preventing the further disappearance of indigenous systems of medicine, which may potentially benefit society in general. According to the Southern African Trade Directory of Indigenous Natural Products, more than 1 000 species of plants are used traditionally in southern Africa (Izimpande, 2005) of which the genus Commiphora is one. 1.2 An introduction to the family Burseraceae and genus Commiphora 1.2.1 The family: Burseraceae The Burseraceae is composed of both trees and shrubs of tropical and sub-tropical geographical distribution (Watson and Dallwitz, 1992). The bark of the trees are known mostly for producing fragrant resins of economic, medicinal and cultural value 37 (Langenheim, 2003), and for baring essential oils. The Burseraceae consists of approximately 700 species from 18 genera. This family is divided into three tribes, namely Canarieae, Protieae and Bursereae, each distributed pantropically across a broad range of low-elevation, frost-free habitats including rainforest, dry deciduous forest and desert (Weeks et al ., 2005). This classification is based exclusively upon their fruit structure. In a study by Clarkson et al . (2002), the tribal relationships within the Burseraceae were revealed by the phylogeny depicted in Figure 1.1. This was determined through the sampling of chloroplast rps 16 intron sequences (ribosomal protein genes) from 13 species of 11 genera within the Burseraceae, rooting their analysis with several genera in the Anacardiaceae, a family closely resembling the Burseraceae and with which it has been closely allied traditionally. The Burseraceae is one of nine flowering plant families belonging to the order Sapindales that comprise the monophyletic group (5,700 species), whos first known fossils appear in Europe ca. 65 million years ago (Ma). Two of the three tribes, namely Canarieae and Protieae, were determined to be monophyletic, while the Burserae were shown to be polyphyletic. Commiphora has several species in Africa and at least one species ( Commiphora leptophloeos ) in South America. A Gondwanan origin of the family was assumed and the separation of Africa and South America (95 - 100 Ma) was used to date disjunct Commiphoras common ancestor and thereby calibrate the difference in times across the family (Becerra, 2005). The hypothesis of the Gondwanan origin needed to be refined. The molecular phylogenies of the Burseraceae were based on nuclear and chloroplast DNA data for 13 of the 18 genera. A map of the Early Eocene continents and their relative positions helps illustrate the expansive distribution of the Burseraceae (Figure 1.2). The Early Eocene age of the Burserinae and its broadly North American origin implicates at least one migration event to the Old World to explain the African, Madagascar, and Indian distributions of Commiphora species. The data obtained supported a North American Paleocene origin for the Burseraceae, followed by the dispersal of ancestral lineages to North America and the Southern Hemisphere. Commiphora appears to have dispersed and radiated within continental Africa approximately 44 Ma, during the Middle Eocene. The spread of Commiphora to India appears to have occurred in relatively recent geologic times, approximately 5.0 Ma (Weeks et al ., 2005). 38 Trattinnickia – NW Dacryodes – OW Canariae Sentiria – OW Triomma – OW Garuga – OW Bursereae Boswellia – OW s ubtribe Boswelliniae Protium sp. 1 – NW Protium sp. 2 – OW Protieae Protium sp. 3 – OW Crepidospermum – NW Bursera – NW Bursereae Commiphora – OW subtribe Burserinae Beiselia – NW subtribe
Recommended publications
  • MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION to of NORTH AFRICA Opidjd CHEMISTRY and CONSUMPTION by Loutfy Boulos
    hv'IERIGAN BCXtlNICAL COJNCIL -----New Act(uisition~---------l ETHNOBOTANY FLORA OF LOUISIANA Jllll!llll GUIDE TO FLOWERING FLORA Ed. by Richard E. Schultes and Siri of by Margaret Stones. 1991. Over PLANT FAMILIES von Reis. 1995. Evolution of o LOUISIANA 200 beautiful full color watercolors by Wendy Zomlefer. 1994. 130 discipline. Thirty-six chapters from and b/w illustrations. Each pointing temperate to tropical families contributors who present o tru~ accompanied by description, habitat, common to the U.S. with 158 globol perspective on the theory and and growing conditions. Hardcover, plates depicting intricate practice of todoy's ethnobotony. 220 pp. $45. #8127 of 312 species. Extensive Hardcover, 416 pp. $49.95. #8126 glossary. Hardcover, 430 pp. $55. #8128 FOLK MEDICINE MUSHROOMS: TAXOL 4t SCIENCE Ed. by Richard Steiner. 1986. POISONS AND PANACEAS AND APPLICATIONS Examines medicinal practices of by Denis Benjamin. 1995. Discusses Ed. by Matthew Suffness. 1995. TAXQL® Aztecs and Zunis. Folk medicine Folk Medicine signs, symptoms, and treatment of Covers the discovery and from Indio, Fup, Papua New Guinea, poisoning. Full color photographic development of Toxol, supp~. Science and Australia, and Africa. Active identification. Health and nutritional biology (including biosynthesis and ingredients of garlic and ginseng. aspects of different species. biopharmoceutics), chemistry From American Chemical Society Softcover, 422 pp. $34.95 . #8130 (including structure, detection and Symposium. Softcover, isolation), and clinical studies. 223 pp. $16.95. #8129 Hardcover, 426 pp. $129.95 #8142 MEDICINAL PLANTS OPIUM POPPY: BOTANY, TEA: CULTIVATION TO OF NORTH AFRICA OpiDJD CHEMISTRY AND CONSUMPTION by Loutfy Boulos. 1983. Authoritative, Poppy PHARMACOLOGY TEA Ed.
    [Show full text]
  • Vascular Plants Diversity and Ethnobotany With
    VASCULAR PLANTS DIVERSITY AND ETHNOBOTANY WITH EMPHASIS TO TRADITIONAL MEDICINAL AND WILD EDIBLE PLANTS IN DUGDA DAWA DISTRICT OF BORANA ZONE, OROMIA REGIONAL STATE, ETHIOPIA Mersha Ashagre Eshete Addis Ababa University Addis Ababa, Ethiopia April 2017 VASCULAR PLANTS DIVERSITY AND ETHNOBOTANY WITH EMPHASIS TO TRADITIONAL MEDICINAL AND WILD EDIBLE PLANTS IN DUGDA DAWA DISTRICT OF BORANA ZONE, OROMIA REGIONAL STATE, ETHIOPIA Mersha Ashagre Eshete A Thesis Submitted to The Department of Plant Biology and Biodiversity Management Presented in Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Plant Biology and Biodiversity Management) Addis Ababa University Addis Ababa, Ethiopia April 2017 i ADDIS ABABA UNIVERSITY GRADUATE PROGRAMMES This is to certify that the thesis prepared by Mersha Ashagre Eshete, entitled: “Vascular Plants Diversity and Ethnobotany with Emphasis to Traditional Medicinal and Wild Edible Plants in Dugda Dawa District of Borana Zone, Oromia Regional State, Ethiopia”, and submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy (Plant Biology and Biodiversity Management) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by Research Supervisors: Name Signature Date 1. _____________________ _________________ _____________ 2.______________________ _________________ _____________ 3._____________________ _________________ ______________ 4.____________________ __________________ _______________ _____________________
    [Show full text]
  • Pilocarpine Content and Molecular Diversity in Jaborandi
    478 Sandhu et al. PILOCARPINE CONTENT AND MOLECULAR DIVERSITY IN JABORANDI Sardul Singh Sandhu1; Ilka Nacif Abreu2; Carlos Augusto Colombo3; Paulo Mazzafera2* 1 Department of Biological Science, R. D. University, Jabalpur, India. 2 UNICAMP/IB - Depto. de Fisiologia Vegetal. C.P. 6109 - 13083-970 - Campinas, SP - Brasil. 3 IAC - Centro de Pesquisa e Desenvolvimento de Recursos Genéticos Vegetais, C.P. 28 - 13020-902 - Campinas, SP - Brasil. *Corresponding author <[email protected]> ABSTRACT: Pilocarpine is an imidazol alkaloid exclusively found in Pilocarpus genus and P. microphyllus accumulates its highest content in the leaves. There is no report in the literature on the variability of the pilocarpine content in this genus. A population of 20 genotypes of P. microphyllus from the state of Maranhão, Brazil, was analyzed for Random Amplification of Polymorphic DNA (RAPD) markers and pilocarpine content. Although it was not possible to establish any correlation between these features, the absence or presence of some markers could indicate in some genotypes a possible association with the content of the alkaloid. Key words: RAPD, Pilocarpus jaborandi, molecular diversity, molecular markers CONTEÚDO DE PILOCARPINA E DIVERSIDADE MOLECULAR EM JABORANDI RESUMO: Pilocarpina é um alcalóide imidazólico encontrado exclusivamente em plantas do gênero Pilocarpus, sendo que as folhas de P. microphyllus acumulam o maior conteúdo deste alcalóide. Não há na literatura nenhum relato sobre a variabilidade do conteúdo de pilocarpina nesse gênero. Uma população de 20 plantas de P. microphyllus do estado do Maranhão, Brasil, foi analisada por marcadores Aplicação de DNA polimórfico randomica (RAPD) e quanto ao conteúdo de pilocarpina. Apesar de não ter sido possível estabelecer uma associação entre as variáveis estudadas, a ausência ou a presença de alguns loci marcadores em certos genótipos puderam ser associados ao teor do alcalóide.
    [Show full text]
  • The Monophyly of Bursera and Its Impact for Divergence Times of Burseraceae
    TAXON 61 (2) • April 2012: 333–343 Becerra & al. • Monophyly of Bursera The monophyly of Bursera and its impact for divergence times of Burseraceae Judith X. Becerra,1 Kogi Noge,2 Sarai Olivier1 & D. Lawrence Venable3 1 Department of Biosphere 2, University of Arizona, Tucson, Arizona 85721, U.S.A. 2 Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan 3 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, U.S.A. Author for correspondence: Judith X. Becerra, [email protected] Abstract Bursera is one of the most diverse and abundant groups of trees and shrubs of the Mexican tropical dry forests. Its interaction with its specialist herbivores in the chrysomelid genus Blepharida, is one of the best-studied coevolutionary systems. Prior studies based on molecular phylogenies concluded that Bursera is a monophyletic genus. Recently, however, other molecular analyses have suggested that the genus might be paraphyletic, with the closely related Commiphora, nested within Bursera. If this is correct, then interpretations of coevolution results would have to be revised. Whether Bursera is or is not monophyletic also has implications for the age of Burseraceae, since previous dates were based on calibrations using Bursera fossils assuming that Bursera was paraphyletic. We performed a phylogenetic analysis of 76 species and varieties of Bursera, 51 species of Commiphora, and 13 outgroups using nuclear DNA data. We also reconstructed a phylogeny of the Burseraceae using 59 members of the family, 9 outgroups and nuclear and chloroplast sequence data. These analyses strongly confirm previous conclusions that this genus is monophyletic.
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • Efficacy of the Aqueous Root Extract of Phyllanthus Muellerianus in Alleviating Anemia in Rats
    EFFICACY OF THE AQUEOUS ROOT EXTRACT OF PHYLLANTHUS MUELLERIANUS IN ALLEVIATING ANEMIA IN RATS By Gershom B. Lwanga A DISSERTATION SUBMITTED TO THE UNIVERSITY OF ZAMBIA IN PARTIAL FULFILMENT FOR THE AWARD OF MASTER OF SCIENCE IN BIOCHEMISTRY. THE UNIVERSITY OF ZAMBIA, LUSAKA 2017 COPYRIGHT DECLARATION No part of this dissertation may be reproduced, stored in any retrieval form / system or transmitted in any form / system by any means, electronic, photocopying, recording or mechanical, without prior written permission or consent of the author. November 2017 ALL RIGHTS RESERVED i DECLARATION I, Gershom B. Lwanga hereby declare that this dissertation is my own work. To the best of my knowledge, the work has not been submitted before for any degree or examination in any other university. All sources used have been acknowledged accordingly. Date……………………………… Signature …………………………… Gershom B. Lwanga ii CERTIFICATE OF APPROVAL This dissertation of Gershom B. Lwanga has been approved as fulfilling the requirements or partial fulfillment of the requirements for the award of Master of Science in Biochemistry by the University of Zambia. EXAMINERS Examiner 1. Name: ............................................................................... Signed: ----------------------------------------------------------- Date: ----------------------------------------------------------- Examiner 2. Name: .............................................................................. Signed: ----------------------------------------------------------- Date: -----------------------------------------------------------
    [Show full text]
  • 2015PA112023.Pdf
    UNIVERSITE MARIEN NGOUABI UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 470: CHIMIE DE PARIS SUD Laboratoire d’Etude des Techniques et d’Instruments d’Analyse Moléculaire (LETIAM) THÈSE DE DOCTORAT CHIMIE par Arnold Murphy ELOUMA NDINGA INVENTAIRE ET ANALYSE CHIMIQUE DES EXSUDATS DES PLANTES D’UTILISATION COURANTE AU CONGO-BRAZZAVILLE Date de soutenance : 27/02/2015 Directeur de thèse : M. Pierre CHAMINADE, Professeur des Universités (France) Co-directeur de thèse : M. Jean-Maurille OUAMBA, Professeur Titulaire CAMES (Congo) Composition du jury : Président : M. Alain TCHAPLA, Professeur Emérite, Université Paris-Sud Rapporteurs : M. Zéphirin MOULOUNGUI, Directeur de Recherche INRA, INP-Toulouse M. Ange Antoine ABENA, Professeur Titulaire CAMES, Université Marien Ngouabi Examinateurs : M. Yaya MAHMOUT, Professeur Titulaire CAMES, Université de N’Djaména Mme. Myriam BONOSE, Maître de Conférences, Université Paris-Sud A mon père ELOUMA NDINGA, cette thèse est pour toi. A ma mère Gabrielle ESSASSA, c’est le fruit de tes sacrifices. A mes sœur et frères qui m’ont toujours poussé en avant. Voilà l’aboutissement de vos efforts. A mes frères et sœurs de CHARISMA, église chrétienne, pour avoir cru en moi plus que moi-même. A mes étudiants qui m’ont aidé dans cette tâche difficile. Je vous dédie ce travail en guise de ma gratitude et de ma reconnaissance. A mes amis et collègues A tous ceux qui m’ont encouragé et soutenu. Témoignage de ma profonde affection. i Remerciements Ces travaux de recherche, réalisés dans le cadre d’une convention internationale de cotutelle de thèse entre l’Université Marien NGOUABI et l’Université Paris-Sud, sont le fruit d’u de l’Agence Universitaire de la Francophonie « formation et recherche sur la Pharmacopée et la Médecine Traditionnelles Africaines » et de la Formation Doctorale « Ecotechnologie, Valorisation du Végétal et bio-Santé » (PER-AUF-PMTA/UC2V/FD-SEV), et le Laboratoire d’Etude des Techniques et d’Instruments d’Analyse Moléculaire (LETIAM), membre du Groupe de Chimie Analytique de Paris-Sud (GCA).
    [Show full text]
  • Alkaloids – Secrets of Life
    ALKALOIDS – SECRETS OF LIFE ALKALOID CHEMISTRY, BIOLOGICAL SIGNIFICANCE, APPLICATIONS AND ECOLOGICAL ROLE This page intentionally left blank ALKALOIDS – SECRETS OF LIFE ALKALOID CHEMISTRY, BIOLOGICAL SIGNIFICANCE, APPLICATIONS AND ECOLOGICAL ROLE Tadeusz Aniszewski Associate Professor in Applied Botany Senior Lecturer Research and Teaching Laboratory of Applied Botany Faculty of Biosciences University of Joensuu Joensuu Finland Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris San Diego • San Francisco • Singapore • Sydney • Tokyo Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First edition 2007 Copyright © 2007 Elsevier B.V. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation
    [Show full text]
  • Herbaria, Relational Databases, Literature
    6.79.7 MANAGING ETHNOPHARMACOLOGICAL DATA: HERBARIA, RELATIONAL DATABASES, LITERATURE J. R. Stepp, Department of Anthropology, University of Florida, USA M. B. Thomas, Department of Botany, University of Hawai’i, USA Keywords database technology, relational databases, herabaria, standards, meta-data 1. Introduction 2. Historical trends 3. Present trends 3.1 Ethnopharmacological Databases 3.2 New Models for Ethnopharmacological Databases 3.3 Managing Field Data and Workflow 3.4 Voucher Specimens and Ethnopharmacological data 4. Conclusions and Future Challenges 1.0 Introduction The management of ethnopharmacological data is a complex issue due to the interdisciplinary nature of the discipline. Research questions and methods vary widely depending on the training and background of the researcher(s). This can lead to difficulties in standardizing data and engaging in comparative approaches. The field of ethnopharmacology involves people’s use of plants, fungi, animals, microorganisms and minerals, in the context of traditional medical systems. It is concerned with identifying the biological and pharmacological effects of these materia medica, and communicating that information based on the principles established through international conventions. Early humans confronted with illness and disease, experimented and discovered a wealth of useful therapeutic agents in both the animal and plant kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Today, at least 121 plant derived pharmaceutical drugs including belladona alkaloids (e.g. atropine, hyoscyamine, and scopolamine), digoxin, cocaine, the opiates (codeine and morphine), tubocurarine, digoxin, reserpine, taxol, tubocurarine, quinine and reserpine were discovered and commercialized through the study of traditional remedies.
    [Show full text]
  • Études Botaniques, Chimiques Et Thérapeutiques
    Lavandula angustifolia M., Lavandula latifolia M., Lavandula x intermedia E. : ´etudesbotaniques, chimiques et th´erapeutiques Maud Belmont To cite this version: Maud Belmont. Lavandula angustifolia M., Lavandula latifolia M., Lavandula x intermedia E. : ´etudesbotaniques, chimiques et th´erapeutiques. Sciences pharmaceutiques. 2013. <dumas- 00858644> HAL Id: dumas-00858644 http://dumas.ccsd.cnrs.fr/dumas-00858644 Submitted on 5 Sep 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il n’a pas été réévalué depuis la date de soutenance. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D’autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact au SICD1 de Grenoble : [email protected] LIENS LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm UNIVERSITÉ JOSEPH FOURIER FACULTÉ DE PHARMACIE DE GRENOBLE Année 2013 Lavandula angustifolia M., Lavandula latifolia M., Lavandula x intermedia E.: ÉTUDES BOTANIQUES, CHIMIQUES ET THÉRAPEUTIQUES.
    [Show full text]
  • Savanna Fire and the Origins of the “Underground Forests” of Africa
    SAVANNA FIRE AND THE ORIGINS OF THE “UNDERGROUND FORESTS” OF AFRICA Olivier Maurin1, *, T. Jonathan Davies1, 2, *, John E. Burrows3, 4, Barnabas H. Daru1, Kowiyou Yessoufou1, 5, A. Muthama Muasya6, Michelle van der Bank1 and William J. Bond6, 7 1African Centre for DNA Barcoding, Department of Botany & Plant Biotechnology, University of Johannesburg, PO Box 524 Auckland Park 2006, Johannesburg, Gauteng, South Africa; 2Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, QC H3A 0G4, Quebec, Canada; 3Buffelskloof Herbarium, P.O. Box 710, Lydenburg, 1120, South Africa; 4Department of Plant Sciences, University of Pretoria, Private Bag X20 Hatfield 0028, Pretoria, South Africa; 5Department of Environmental Sciences, University of South Africa, Florida campus, Florida 1710, Gauteng, South Africa; 6Department of Biological Sciences and 7South African Environmental Observation Network, University of Cape Town, Rondebosch, 7701, Western Cape, South Africa *These authors contributed equally to the study Author for correspondence: T. Jonathan Davies Tel: +1 514 398 8885 Email: [email protected] Manuscript information: 5272 words (Introduction = 1242 words, Materials and Methods = 1578 words, Results = 548 words, Discussion = 1627 words, Conclusion = 205 words | 6 figures (5 color figures) | 2 Tables | 2 supporting information 1 SUMMARY 1. The origin of fire-adapted lineages is a long-standing question in ecology. Although phylogeny can provide a significant contribution to the ongoing debate, its use has been precluded by the lack of comprehensive DNA data. Here we focus on the ‘underground trees’ (= geoxyles) of southern Africa, one of the most distinctive growth forms characteristic of fire-prone savannas. 2. We placed geoxyles within the most comprehensive dated phylogeny for the regional flora comprising over 1400 woody species.
    [Show full text]
  • Othman SS Hamood** and Salah, MI El-Naggar
    Ass. Univ. Bull. Environ. Res. Vol. 15 No. 2 October 2012 Ass. Univ. Bull. Environ. Res. Vol. 15 No. 2 October 2012 AUCES STUDIES ON THE FLORA OF YEMEN: 2-FLORA OF TOOR AL-BAHA DISTRICT, LAHEJ GOVERNORATE, YEMEN Abdo, M. A. Dahmash*; Othman S. S. Hamood** and Salah, M. I. El-Naggar*** *Biology Department, Faculty of science, Sana, a Uuiversity, Yemen **Biology Department, Faculty of Education, Aden Uuiversity, Yemen ***Botany Department , Faculty of science, Assiut Uuiversity, Egypt ABSTRACT: Toor Al-Baha of Lahej governorate (Yemen) lies between latitudes 12° 58` - 13° 20` N, and longitudes 44° 11` - 44° 39`E, has been studied floristically. This region covers about 1883 sq km. Analysis of the floristic composion of the studied area have been carried out and proved that, about 560 taxa belong to 288 genera and 89 families of the vascular plants have been recorded. Of these, the largest families are: Poaceae, Asteraceae, Asclepiadaceae, Euphorbiaceae, Fabaceae, Acanthaceae, Capparaceae, Lamiaceae, Boraginaceae, Malvaceae, Solanaceae, Mimosaceae, Tiliaceae, Amaranthaceae, Cucurbitaceae, Convolvulaceae and Scrophulariaceae, while the largest genera are: Euphorbia, Acacia, Grewia, Heliotropium, Indigofera, Barleria, Eragrostis, Aloe, Hibiscus, Solanum, Tephrosia, Cadaba, Crenulluma, Ficus, Justicia, and Senna. It was also noted that the generic index = 1.94. Sixty eight succulents taxa belong to eighteen families were recorded in the flora of the studied area, among these families six are the richest ones: Asclepiadaceae, Euphorbiaceae, Aloaceae, Aizoaceae, Crassulaceae and Vitaceae. Twenty eight taxa are endemic to flora of Yemen, among them Rhytidocaulon splendidum T. A. McCoy is endemic to Toor Al-Baha only. Another thirty four taxa are found to be near endemic to the flora of Yemen.
    [Show full text]