UNIVERSITY of CALIFORNIA, SAN DIEGO The

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO The UNIVERSITY OF CALIFORNIA, SAN DIEGO The Comparative Genomics of Salinispora and the Distribution and Abundance of Secondary Metabolite Genes in Marine Plankton A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Kevin Matthew Penn Committee in charge: Paul R. Jensen, Chair Eric Allen Lin Chao Bradley Moore Brian Palenik Forest Rohwer 2012 Copyright Kevin Matthew Penn, 2012 All rights reserved The Dissertation of Kevin Matthew Penn is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION I dedicate this dissertation to my Mom Gail Penn and my Father Lawrence Penn they deserve more credit then any person could imagine. They have supported me through the good times and the bad times. They have never given up on me and they are always excited to know that I am doing well. They just want the best for me. They have encouraged my education from both a philosophical and financial point of view. I also thank my sister Heather Kalish and brother in-law Michael Kalish for providing me with support during the beginning of my academic career and introducing me to Jonathan Eisen who ended opening the door for me to an endless bounty of intellectual pursuits. iv EPIGRAPH “Nothing in Biology Makes Sense Except in the Light of Evolution” - Theodosius Dobzhansky, 1973 v TABLE OF CONTENTS SIGNATURE PAGE ..................................................................................................................................III DEDICATION .............................................................................................................................................IV EPIGRAPH ....................................................................................................................................................V TABLE OF CONTENTS ...........................................................................................................................VI LIST OF FIGURES ....................................................................................................................................IX LIST OF TABLES ......................................................................................................................................XI ACKNOWLEDGEMENTS ....................................................................................................................XIII VITA...........................................................................................................................................................XVI PUBLICATIONS......................................................................................................................................XVI FIELD OF STUDY................................................................................................................................. XVII ABSTRACT OF THE DISSERTATION ..........................................................................................XVIII CHAPTER 1: INTRODUCTION ...............................................................................................................1 MARINE BIOLOGY ........................................................................................................................................2 MICROBIAL LOOP .........................................................................................................................................3 MARINE SEDIMENT.......................................................................................................................................4 NATURAL PRODUCT DISCOVERY.................................................................................................................7 ACTINOBACTERIA.........................................................................................................................................8 SALINISPORA ..................................................................................................................................................9 HISTORY OF EVOLUTIONARY BIOLOGY ................................................................................................... 10 MICROBIAL ECOLOGY AND EVOLUTION .................................................................................................. 12 CONCLUSION.............................................................................................................................................. 13 REFERENCES .............................................................................................................................................. 14 CHAPTER 2: GENOMIC ISLANDS LINK SECONDARY METABOLISM TO FUNCTIONAL ADAPTATION IN MARINE ACTINOBACTERIA ............................................................................ 21 INTRODUCTION .......................................................................................................................................... 22 METHODS................................................................................................................................................... 24 RESULTS AND DISCUSSION........................................................................................................................ 28 CONCLUSIONS............................................................................................................................................ 36 ACKNOWLDEGEMENTS.............................................................................................................................. 36 REFERENCES .............................................................................................................................................. 37 CHAPTER 3: COMPARATIVE GENOMICS REVEALS EVIDENCE OF MARINE ADAPTATION IN SALINISPORA SPECIES........................................................................................ 58 INTRODUCTION .......................................................................................................................................... 59 METHODS................................................................................................................................................... 63 RESULTS..................................................................................................................................................... 68 vi DISCUSSION ............................................................................................................................................... 76 CONCLUSIONS............................................................................................................................................ 80 ACKNOWLEDGMENTS................................................................................................................................ 81 REFERENCES .............................................................................................................................................. 81 FIGURES ..................................................................................................................................................... 87 TABLES....................................................................................................................................................... 92 CHAPTER 4: THE ABUNDANCE AND EXPRESSION OF SECONDARY METABOLISM GENES IN MARINE PLANKTON REVEALS NEW PHYLOGENETIC DIVERSITY OF PROTISTAN LIKE KETOSYNTHASE DOMAINS.......................................................................... 102 ABSTRACT................................................................................................................................................ 102 INTRODUCTION ........................................................................................................................................ 103 METHODS................................................................................................................................................. 107 RESULTS................................................................................................................................................... 109 DISCUSSION ............................................................................................................................................. 119 CONCLUSIONS.......................................................................................................................................... 127 ACKNOWLEDGEMENTS............................................................................................................................ 129 REFERENCES ............................................................................................................................................ 130 FIGURES ................................................................................................................................................... 137 TABLES..................................................................................................................................................... 148 CHAPTER 5: CONCLUSIONS AND FUTURE PERSPECTIVES................................................ 154 REFERENCES ............................................................................................................................................ 160 APPENDIX A: GENETIC COMPLEMENTATION OF THE OBLIGATE MARINE ACTINOBACTERIUM SALINISPORA TROPICA WITH THE LARGE
Recommended publications
  • Marine Sediment Recovered Salinispora Sp. Inhibits the Growth of Emerging Bacterial Pathogens and Other Multi-Drug-Resistant Bacteria
    Polish Journal of Microbiology ORIGINAL PAPER 2020, Vol. 69, No 3, 321–330 https://doi.org/10.33073/pjm-2020-035 Marine Sediment Recovered Salinispora sp. Inhibits the Growth of Emerging Bacterial Pathogens and other Multi-Drug-Resistant Bacteria LUIS CONTRERAS-CASTRO1 , SERGIO MARTÍNEZ-GARCÍA1, JUAN C. CANCINO-DIAZ1 , LUIS A. MALDONADO2 , CLAUDIA J. HERNÁNDEZ-GUERRERO3 , SERGIO F. MARTÍNEZ-DÍAZ3 , BÁRBARA GONZÁLEZ-ACOSTA3 and ERIKA T. QUINTANA1* 1 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México 2 Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México 3 Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México Submitted 19 March 2020, revised 22 July 2020, accepted 25 July 2020 Abstract Marine obligate actinobacteria produce a wide variety of secondary metabolites with biological activity, notably those with antibiotic activity urgently needed against multi-drug-resistant bacteria. Seventy-five marine actinobacteria were isolated from a marine sediment sample collected in Punta Arena de La Ventana, Baja California Sur, Mexico. The 16S rRNA gene identification, Multi Locus Sequence Analysis, and the marine salt requirement for growth assigned seventy-one isolates as members of the genus Salinispora, grouped apart but related to the main Salinispora arenicola species clade. The ability of salinisporae to inhibit bacterial growth of Staphylococcus epidermidis, Enterococ- cus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacer baumannii, Pseudomonas aeruginosa, and Enterobacter spp. was evaluated by cross-streaking plate and supernatant inhibition tests. Ten supernatants inhibited the growth of eight strains of S.
    [Show full text]
  • Diversity and Evolution of Secondary Metabolism in the Marine
    Diversity and evolution of secondary metabolism in the PNAS PLUS marine actinomycete genus Salinispora Nadine Ziemert, Anna Lechner, Matthias Wietz, Natalie Millán-Aguiñaga, Krystle L. Chavarria, and Paul Robert Jensen1 Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093 Edited* by Christopher T. Walsh, Harvard Medical School, Boston, MA, and approved February 6, 2014 (received for review December 30, 2013) Access to genome sequence data has challenged traditional natural The pathways responsible for secondary metabolite biosynthesis product discovery paradigms by revealing that the products of most are among the most rapidly evolving genetic elements known (5). bacterial biosynthetic pathways have yet to be discovered. Despite It has been shown that gene duplication, loss, and HGT have all the insight afforded by this technology, little is known about the played important roles in the distribution of PKSs among diversity and distributions of natural product biosynthetic pathways microbes (8, 9). Changes within PKS and NRPS genes also include among bacteria and how they evolve to generate structural di- mutation, domain rearrangement, and module duplication (5), all versity. Here we analyze genome sequence data derived from 75 of which can account for the generation of new small-molecule strains of the marine actinomycete genus Salinispora for pathways diversity. The evolutionary histories of specific PKS and NRPS associated with polyketide and nonribosomal peptide biosynthesis, domains have proven particularly informative, with KS and C the products of which account for some of today’s most important domains providing insight into enzyme architecture and function medicines.
    [Show full text]
  • Phylogenetic Analysis of the Salinipostin Γ-Butyrolactone Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342204; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogenetic analysis of the salinipostin g-butyrolactone gene cluster uncovers 2 new potential for bacterial signaling-molecule diversity 3 4 Kaitlin E. Creamera, Yuta Kudoa, Bradley S. Mooreb,c, Paul R. Jensena# 5 6 a Center for Marine Biotechnology and Biomedicine, Scripps Institution of 7 Oceanography, University of California San Diego, La Jolla, California, USA 8 b Center for Oceans and Human Health, Scripps Institution of Oceanography, University 9 of California San Diego, La Jolla, California, USA 10 c Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California 11 San Diego, La Jolla, California, USA 12 13 Running Head: Phylogenetic analysis of the salinipostin gene cluster 14 15 #Address correspondence to Paul R. Jensen, [email protected]. 16 17 Keywords salinipostin, g-butyrolactones, biosynthetic gene clusters, Salinispora, 18 bacterial signaling molecules, actinomycetes, HGT bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342204; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Bacteria communicate by small-molecule chemicals that facilitate intra- and inter- 21 species interactions. These extracellular signaling molecules mediate diverse processes 22 including virulence, bioluminescence, biofilm formation, motility, and specialized 23 metabolism. The signaling molecules produced by members of the phylum 24 Actinobacteria are generally comprised of g-butyrolactones, g-butenolides, and furans.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO the Comparative Genomics
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The Comparative Genomics of Salinispora and the Distribution and Abundance of Secondary Metabolite Genes in Marine Plankton A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Kevin Matthew Penn Committee in charge: Paul R. Jensen, Chair Eric Allen Lin Chao Bradley Moore Brian Palenik Forest Rohwer 2012 UMI Number: 3499839 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3499839 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Copyright Kevin Matthew Penn, 2012 All rights reserved The Dissertation of Kevin Matthew Penn is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION I dedicate this dissertation to my Mom Gail Penn and my Father Lawrence Penn they deserve more credit then any person could imagine. They have supported me through the good times and the bad times. They have never given up on me and they are always excited to know that I am doing well. They just want the best for me.
    [Show full text]
  • A Genomic Journey Through a Genus of Large DNA Viruses
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14.
    [Show full text]
  • Isolation, Identification and Investigation of Their Bioactive Potential Inês Filipa Coelho Ribeiro
    M DISSERTAÇÃO DE MESTRADO DE DISSERTAÇÃO AMBIENTAIS CONTAMINAÇÃO E TOXICOLOGIA Marine Actinobacteria from the Northern isolation, Coast: Portuguese of their and investigation identification bioactive potential Inês Filipa Coelho Ribeiro 2017 Inês Filipa Coelho Ribeiro. Marine Actinobacteria from the Northern Portuguese Coast: isolation, identification and M.ICBAS 2017 investigation of their bioactive potential Marine Actinobacteria from the Northern Portuguese Coast: isolation, identification and investigation of their bioactive potential Inês Filipa Coelho Ribeiro SEDE ADMINISTRATIVA INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAR FACULDADE DE CIÊNCIAS INÊS FILIPA COELHO RIBEIRO MARINE ACTINOBACTERIA FROM THE NORTHERN PORTUGUESE COAST: ISOLATION, IDENTIFICATION AND INVESTIGATION OF THEIR BIOACTIVE POTENTIAL Dissertação de Candidatura ao grau de Mestre em Toxicologia e Contaminação Ambientais submetida ao Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto. Orientadora – Doutora Maria de Fátima Carvalho Categoria – Investigadora Auxiliar Afiliação – Centro Interdisciplinar de Investigação Marinha e Ambiental da Universidade do Porto Co-orientador – Doutor Filipe Pereira Categoria – Investigador Auxiliar Afiliação – Centro Interdisciplinar de Investigação Marinha e Ambiental da Universidade do Porto ACKNOWLEDGEMENTS First of all, I would like to thank my supervisor, Dr. Fátima Carvalho, who received me and made possible the work done in this thesis. My genuine thanks for all the shared knowledge, for all the trust and dedication and for all you provided me so that my goals were achieved. Thank you for being part of a very important phase for my personal and professional development. I would also like to thank my co-advisor, Dr. Filipe Pereira for his trust, for the support he provided me and for his contribution in the tools of molecular biology that were used in this work.
    [Show full text]
  • Genome Sequencing Reveals Complex Secondary Metabolome in the Marine Actinomycete Salinispora Tropica
    Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica Daniel W. Udwary*, Lisa Zeigler*, Ratnakar N. Asolkar*, Vasanth Singan†, Alla Lapidus†, William Fenical*, Paul R. Jensen*, and Bradley S. Moore*‡§ *Scripps Institution of Oceanography and ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0204; and †Department of Energy, Joint Genome Institute–Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598 Edited by Christopher T. Walsh, Harvard Medical School, Boston, MA, and approved May 7, 2007 (received for review February 1, 2007) Recent fermentation studies have identified actinomycetes of the The biosynthetic genes responsible for the production of these marine-dwelling genus Salinispora as prolific natural product pro- metabolites are almost invariably tightly packaged into operon-like ducers. To further evaluate their biosynthetic potential, we se- clusters that include regulatory elements and resistance mecha- quenced the 5,183,331-bp S. tropica CNB-440 circular genome and nisms (11). In the case of modular polyketide synthase (PKS) and analyzed all identifiable secondary natural product gene clusters. nonribosomal peptide synthetase (NRPS) systems, the repetitive Our analysis shows that S. tropica dedicates a large percentage of domain structures associated with these megasynthases generally its genome (Ϸ9.9%) to natural product assembly, which is greater follow a colinearity rule (12) that, when combined with bio- than previous Streptomyces genome sequences as well as other informatics and biosynthetic precedence, can be used to predict natural product-producing actinomycetes. The S. tropica genome the chemical structures of new polyketide and peptide-based features polyketide synthase systems of every known formally metabolites.
    [Show full text]
  • Isolation and Identification of Bioactive Secondary Metabolites from Salinispora Arenicola Obtained from Ocean Sediments from the Madeira Archipelago
    Fredilson da Veiga Melo Biochemistry, B. Sc. Isolation and identification of bioactive secondary metabolites from Salinispora arenicola obtained from ocean sediments from the Madeira Archipelago Dissertation for degree of Master in Biochemistry Supervisor: Dr. Susana P. Gaudêncio Assistant Researcher, REQUIMTE, LAQV, Chemistry Department and UCIBIO, Life Science Department – FCT/UNL Co-supervisor: Dr. Florbela Pereira Post-Doc Researcher, REQUIMTE, LAQV, Chemistry Department – FCT/UNL December 2016 Fredilson da Veiga Melo Biochemistry, B. Sc. Isolation and identification of bioactive secondary metabolites from Salinispora arenicola obtained from ocean sediments from the Madeira Archipelago Dissertation for degree of Master in Biochemistry Supervisor: Dr. Susana P. Gaudêncio Assistant Researcher, REQUIMTE, LAQV, Chemistry Department and UCIBIO, Life Science Department – FCT/UNL Co-supervisor: Dr. Florbela Pereira Post-Doc Researcher, REQUIMTE, LAQV, Chemistry Department – FCT/UNL December 2016 Copyright © Fredilson da Veiga Melo, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa The Faculty of Science and Technology and Universidade Nova de Lisboa have the right, forever and without geographical limits, to file and publish this dissertation through printed copies reproduced in paper or digital form, or by any other means known or Be invented, and to disclose it through scientific repositories and to allow its copying and distribution for non-commercial educational or research purposes, provided the author and publisher are credited. i Aknowledgments To my mom for allowing me to pursuit my dream. This is not a repayment, but a token of appreciation for the trust you put on me. To my landlords who have become a second family. To Dr Susana Gaudêncio and Dr Florbela Pereira for taking me in their lab, and for being very understanding and patient.
    [Show full text]
  • D 6.1 EMBRIC Showcases
    Grant Agreement Number: 654008 EMBRIC European Marine Biological Research Infrastructure Cluster to promote the Blue Bioeconomy Horizon 2020 – the Framework Programme for Research and Innovation (2014-2020), H2020-INFRADEV-1-2014-1 Start Date of Project: 01.06.2015 Duration: 48 Months Deliverable D6.1 b EMBRIC showcases: prototype pipelines from the microorganism to product discovery (Revised 2019) HORIZON 2020 - INFRADEV Implementation and operation of cross-cutting services and solutions for clusters of ESFRI 1 Grant agreement no.: 654008 Project acronym: EMBRIC Project website: www.embric.eu Project full title: European Marine Biological Research Infrastructure cluster to promote the Bioeconomy (Revised 2019) Project start date: June 2015 (48 months) Submission due date: May 2019 Actual submission date: Apr 2019 Work Package: WP 6 Microbial pipeline from environment to active compounds Lead Beneficiary: CABI [Partner 15] Version: 1.0 Authors: SMITH David [CABI Partner 15] GOSS Rebecca [USTAN 10] OVERMANN Jörg [DSMZ Partner 24] BRÖNSTRUP Mark [HZI Partner 18] PASCUAL Javier [DSMZ Partner 24] BAJERSKI Felizitas [DSMZ Partner 24] HENSLER Michael [HZI Partner 18] WANG Yunpeng [USTAN Partner 10] ABRAHAM Emily [USTAN Partner 10] FIORINI Federica [HZI Partner 18] Project funded by the European Union’s Horizon 2020 research and innovation programme (2015-2019) Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services 2 Abstract Deliverable D6.1b replaces Deliverable 6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery with the specific goal to refine technologies used but more specifically deliver results of the microbial discovery pipeline.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Complex Evolutionary Dynamics Govern the Diversity and Distribution of Biosynthetic Gene Clusters and Their Encoded Specialized Metabolites
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423547; this version posted December 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Complex evolutionary dynamics govern the diversity and distribution of biosynthetic gene clusters and their encoded specialized metabolites Alexander B. Chase1, Douglas Sweeney1,2, Mitchell N. Muskat1, Dulce Guillén-Matus1,2, and Paul R. Jensen1,2 1Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 2Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California ABSTRACT While specialized metabolites are thought to mediate ecological interactions, the evolutionary processes driving their distributions, particularly among closely related lineages, remain poorly understood. Here, we examine the evolutionary dynamics governing the diversity and distribution of biosynthetic gene clusters (BGCs) in 118 strains across nine described species within the marine actinomycete genus Salinispora. While previous evidence indicated that horizontal gene transfer largely contributed to BGC diversity, we find that a majority of BGCs in Salinispora genomes are maintained by processes of vertical descent. In particular, we identified species-specific signatures that were associated with both BGC distributions and the production of their encoded specialized metabolites. By analyzing nine experimentally characterized BGCs that range in conservation from species to genus specific, we find that the distribution of BGCs among Salinispora species is maintained by selection, while BGC diversification is constrained by recombination among closely related strains and strengthened by gain/loss events between species.
    [Show full text]