bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342204; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogenetic analysis of the salinipostin g-butyrolactone gene cluster uncovers 2 new potential for bacterial signaling-molecule diversity 3 4 Kaitlin E. Creamera, Yuta Kudoa, Bradley S. Mooreb,c, Paul R. Jensena# 5 6 a Center for Marine Biotechnology and Biomedicine, Scripps Institution of 7 Oceanography, University of California San Diego, La Jolla, California, USA 8 b Center for Oceans and Human Health, Scripps Institution of Oceanography, University 9 of California San Diego, La Jolla, California, USA 10 c Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California 11 San Diego, La Jolla, California, USA 12 13 Running Head: Phylogenetic analysis of the salinipostin gene cluster 14 15 #Address correspondence to Paul R. Jensen,
[email protected]. 16 17 Keywords salinipostin, g-butyrolactones, biosynthetic gene clusters, Salinispora, 18 bacterial signaling molecules, actinomycetes, HGT bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342204; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Bacteria communicate by small-molecule chemicals that facilitate intra- and inter- 21 species interactions. These extracellular signaling molecules mediate diverse processes 22 including virulence, bioluminescence, biofilm formation, motility, and specialized 23 metabolism. The signaling molecules produced by members of the phylum 24 Actinobacteria are generally comprised of g-butyrolactones, g-butenolides, and furans.