Sergio Fubini, Who Was on the MIT Physics Faculty from 1967-1973, Died in Geneva, Switzerland on 6 January 2005 at the Age of 76

Total Page:16

File Type:pdf, Size:1020Kb

Sergio Fubini, Who Was on the MIT Physics Faculty from 1967-1973, Died in Geneva, Switzerland on 6 January 2005 at the Age of 76 Sergio Fubini, who was on the MIT physics faculty from 1967-1973, died in Geneva, Switzerland on 6 January 2005 at the age of 76. Fubini was an eminent physicist, with roots at the University of Turin, Italy, where he held a professorship while also working at MIT, and afterwards at CERN as a member of the directorate. During his years at MIT Fubini, together with his colleague and compatriot Gabriele Veneziano, founded and developed the physical and mathematical principles of string theory, which today is the most active area of investigation in fundamental physics. Veneziano and Fubini formed a research center at MIT, to which were attracted physicists from many countries, especially from Italy. This tradition survived Fubini's departure, and these days is maintained by an exchange program administered and funded by the Italian Nuclear Physics Institute and by MIT. After retiring from CERN, Fubini used his international standing in physics to promote peace in the Middle East. To this end, he organized in 1995 a very successful meeting in Dahab, Egypt, which brought together Arab, Israeli and Western physicists. Also he started a process that culminated in Germany donating an electron-synchotron to the Middle East region, with the hope that it would bring people together, just as CERN did in post-World War II Europe. While one cannot say that these initiatives have as yet succeeded, they are vivid evidence for Fubini's scientific activity, social conscience and humane values. He was recognized by the Heineman Prize, by an honorary degree of Heidelberg University and by a medal from the Italian Government. Fubini is survived by his wife Marina and daughter Emma Kursner. .
Recommended publications
  • The Center for Theoretical Physics: the First 50 Years
    CTP50 The Center for Theoretical Physics: The First 50 Years Saturday, March 24, 2018 50 SPEAKERS Andrew Childs, Co-Director of the Joint Center for Quantum Information and Computer CTPScience and Professor of Computer Science, University of Maryland Will Detmold, Associate Professor of Physics, Center for Theoretical Physics Henriette Elvang, Professor of Physics, University of Michigan, Ann Arbor Alan Guth, Victor Weisskopf Professor of Physics, Center for Theoretical Physics Daniel Harlow, Assistant Professor of Physics, Center for Theoretical Physics Aram Harrow, Associate Professor of Physics, Center for Theoretical Physics David Kaiser, Germeshausen Professor of the History of Science and Professor of Physics Chung-Pei Ma, J. C. Webb Professor of Astronomy and Physics, University of California, Berkeley Lisa Randall, Frank B. Baird, Jr. Professor of Science, Harvard University Sanjay Reddy, Professor of Physics, Institute for Nuclear Theory, University of Washington Tracy Slatyer, Jerrold Zacharias CD Assistant Professor of Physics, Center for Theoretical Physics Dam Son, University Professor, University of Chicago Jesse Thaler, Associate Professor, Center for Theoretical Physics David Tong, Professor of Theoretical Physics, University of Cambridge, England and Trinity College Fellow Frank Wilczek, Herman Feshbach Professor of Physics, Center for Theoretical Physics and 2004 Nobel Laureate The Center for Theoretical Physics: The First 50 Years 3 50 SCHEDULE 9:00 Introductions and Welcomes: Michael Sipser, Dean of Science; CTP Peter
    [Show full text]
  • Physics and Mathematics : a Happily Evolving Marriage ?
    PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. GABRIELE VENEZIANO Physics and mathematics : a happily evolving marriage ? Publications mathématiques de l’I.H.É.S., tome S88 (1998), p. 183-189 <http://www.numdam.org/item?id=PMIHES_1998__S88__183_0> © Publications mathématiques de l’I.H.É.S., 1998, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ PHYSICS AND MATHEMATICS: A HAPPILY EVOLVING MARRIAGE? by GABRIELE VENEZIANO Abstract. - The interplay of physics and mathematics started affecting my student life some forty years ago, and has remained a personal struggle since. 1. High School Days Forty years ago, when the IHÉS was created, I was in my third year as a high school student in Florence. 1 was doing well in most subjects, typically through hard work, and, with almost no effort, 1 was doing particularly well in maths and physics. These two subjects were taught, in Italian high schools, by the same Professor. Very luckily, my class had been assigned to an excellent teacher whose name 1 still remember: Prof. Liverani. 1 recall very well how he gave me the feeling he loved those two subjects and how he could transmit this love to (some of) us.
    [Show full text]
  • The Birth of String Theory
    THE BIRTH OF STRING THEORY String theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical dis- cussions. This unique book explores the history of the theory’s early stages of development, as told by its main protagonists. The book journeys from the first version of the theory (the so-called Dual Resonance Model) in the late 1960s, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-1970s as a quantum theory of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as for historians and philosophers of science. andrea cappelli is a Director of Research at the Istituto Nazionale di Fisica Nucleare, Florence. His research in theoretical physics deals with exact solutions of quantum field theory in low dimensions and their application to condensed matter and statistical physics. elena castellani is an Associate Professor at the Department of Philosophy, Uni- versity of Florence. Her research work has focussed on such issues as symmetry, physical objects, reductionism and emergence, structuralism and realism. filippo colomo is a Researcher at the Istituto Nazionale di Fisica Nucleare, Florence. His research interests lie in integrable models in statistical mechanics and quantum field theory. paolo di vecchia is a Professor of Theoretical Physics at Nordita, Stockholm, and at the Niels Bohr Institute, Copenhagen.
    [Show full text]
  • The Birth of String Theory
    The Birth of String Theory Edited by Andrea Cappelli INFN, Florence Elena Castellani Department of Philosophy, University of Florence Filippo Colomo INFN, Florence Paolo Di Vecchia The Niels Bohr Institute, Copenhagen and Nordita, Stockholm Contents Contributors page vii Preface xi Contents of Editors' Chapters xiv Abbreviations and acronyms xviii Photographs of contributors xxi Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string Gabriele Veneziano 19 3 Gravity, unification, and the superstring John H. Schwarz 41 4 Early string theory as a challenging case study for philo- sophers Elena Castellani 71 EARLY STRING THEORY 91 Part II The prehistory: the analytic S-matrix 93 5 Introduction to Part II 95 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude Marco Ademollo 115 7 The path to the Veneziano model Hector R. Rubinstein 134 iii iv Contents 8 Two-component duality and strings Peter G.O. Freund 141 9 Note on the prehistory of string theory Murray Gell-Mann 148 Part III The Dual Resonance Model 151 10 Introduction to Part III 153 11 From the S-matrix to string theory Paolo Di Vecchia 178 12 Reminiscence on the birth of string theory Joel A. Shapiro 204 13 Personal recollections Daniele Amati 219 14 Early string theory at Fermilab and Rutgers Louis Clavelli 221 15 Dual amplitudes in higher dimensions: a personal view Claud Lovelace 227 16 Personal recollections on dual models Renato Musto 232 17 Remembering the `supergroup' collaboration Francesco Nicodemi 239 18 The `3-Reggeon vertex' Stefano Sciuto 246 Part IV The string 251 19 Introduction to Part IV 253 20 From dual models to relativistic strings Peter Goddard 270 21 The first string theory: personal recollections Leonard Susskind 301 22 The string picture of the Veneziano model Holger B.
    [Show full text]
  • Pos(HRMS)078 ∗ [email protected] Speaker
    Two unforgettable years with Hector PoS(HRMS)078 Gabriele Veneziano∗ Collège de France, Paris, France and Theory Division, CERN, CH-1211 Geneva 23, Switzerland E-mail: [email protected] .......................... ........................... Quarks, Strings and the Cosmos - Hector Rubinstein Memorial Symposium August 09-11, 2010 AlbaNova (Stockholm) Sweden ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Two unforgettable years Gabriele Veneziano 1. Another lucky coincidence As a high school student in Florence I had the luck of being taught by some excellent teachers: Professor Tebaldo Liverani, in particular, was the one who initiated me to loving maths and physics. His preference, he once confessed, went to the former. However, after some hesitation, mine went to the latter as I entered the local University in 1960. Three years later I had to make another choice, this time about which branch of physics to go for. I was about to be "recruited" by the local high-energy experimental group when, just in time, Professor Raoul Gatto moved from Cagliari to Florence and "rescued" me to theoretical physics. PoS(HRMS)078 At the end of 1965 I received my "Laurea" in physics defending a thesis on some applications of the group SU(6)W . Only later I learned that the W in there apparently stood for Weizmann . Working in Florence as one of Gatto’s "gattini" was very stimulating. However, having always lived at home in my family in Florence, I felt the need to enlarge my horizons, both in physics and in life in general.
    [Show full text]
  • Arxiv:0804.3210V1 [Hep-Ph] 20 Apr 2008 Nrdcint Tigter N Ag/Rvt Duality Gauge/Gravity and Theory String to Introduction ∗ † O Hs Tdnswihaesatn Olanqdadqpphysics View
    Introduction to String Theory and Gauge/Gravity duality ∗ for students in QCD and QGP phenomenology Institut de Physique Th´eorique; URA 2306, unit´ede recherche associ´ee au CNRS, IPhT, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France Robi Peschanski † String theory has been initially derived from motivations coming from strong interaction phenomenology, but its application faced deep concep- tual and practical difficulties. The strong interactions found their the- oretical fundation elsewhere, namely on QCD, the quantum gauge field theory of quarks and gluons. Recently, the Gauge/Gravity correspondence allowed to initiate a reformulation of the connection between strings and gauge field theories, avoiding some of the initial drawbacks and opening the way to new insights on the gauge theory at strong coupling and even- tually QCD. Among others, the recent applications of the Gauge/Gravity correspondence to the formation of the QGP, the quark-gluon plasma, in heavy-ion reactions seem to provide a physically interesting insight on phe- nomenological features of the reactions. In these lectures we will give a arXiv:0804.3210v1 [hep-ph] 20 Apr 2008 simplified introduction to those aspects of string theory which, at the ori- gin and in the recent developments, are connected to strong interactions, for those students which are starting to learn QCD and QGP physics from an experimental or phenomenological point of view. PACS numbers: 11.15.-q,11.25.Tq ∗ Presented at the School on QCD, Low-x Physics and Diffraction, Copanello, Calabria, Italy, July 2007. † email:[email protected] (1) 2 proceedings printed on October 25, 2018 CONTENTS Lecture I: String Theory via Strong Interactions 1.
    [Show full text]
  • Green-Schwarz Anomaly Cancellation
    Green-Schwarz anomaly cancellation Paolo Di Vecchia Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm Collège de France, 05.03.10 Paolo Di Vecchia (NBI+NO) GS anomaly cancellation Collège de France, 05.03.10 1 / 30 Plan of the talk 1 Introduction 2 A quick look at the abelian axial anomaly 3 Few words on forms 4 Anomaly cancellation in type IIB superstring theory 5 Anomaly cancellation in type I superstring 6 Conclusions Paolo Di Vecchia (NBI+NO) GS anomaly cancellation Collège de France, 05.03.10 2 / 30 Introduction I The theory of general relativity for gravity was formulated by Einstein in 1915. I It is a four-dimensional theory that extends the theory of special relativity. I While special relativity is invariant under the transformations of the Lorentz group, general relativity is invariant under an arbitrary change of coordinates. I In the twenties it was proposed by Theodor Kaluza and Oskar Klein to unify electromagnetism with gravity by starting from general relativity in a five-dimensional space-time and compactify the extra-dimension on a small circle. I In this way one obtains general relativity in four dimensions, a vector gauge field satisfying the Maxwell equations and a scalar. I This idea of extra dimensions was not pursued in the years after. I In the sixties and seventies, when I started to work in the physics of the elementary particles, everybody was strictly working in four dimensions. Paolo Di Vecchia (NBI+NO) GS anomaly cancellation Collège de France, 05.03.10 3 / 30 I Also the dual resonance model, being a model for hadrons, was obviously formulated in four dimensions.
    [Show full text]
  • Table of Contents More Information
    Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information Contents List of contributors page x Photographs of contributors xiv Preface xxi Abbreviations and acronyms xxiv Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string 17 gabriele veneziano 3 Gravity, unification, and the superstring 37 john h. schwarz 4 Early string theory as a challenging case study for philosophers 63 elena castellani EARLY STRING THEORY Part II The prehistory: the analytic S-matrix 81 5 Introduction to Part II 83 5.1 Introduction 83 5.2 Perturbative quantum field theory 84 5.3 The hadron spectrum 88 5.4 S-matrix theory 91 5.5 The Veneziano amplitude 97 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude 100 marco ademollo 7 The path to the Veneziano model 116 hector r. rubinstein v © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information vi Contents 8 Two-component duality and strings 122 peter g.o. freund 9 Note on the prehistory of string theory 129 murray gell-mann Part III The Dual Resonance Model 133 10 Introduction to Part III 135 10.1 Introduction 135 10.2 N-point dual scattering amplitudes 137 10.3 Conformal symmetry 145 10.4 Operator formalism 147 10.5 Physical states 150 10.6 The tachyon 153 11 From the S-matrix to string theory 156 paolo di vecchia 12 Reminiscence on the birth of string theory 179 joel a.
    [Show full text]
  • Quaderni Del Trentennale 1975-2005
    ISTITUTO ITALIANO PER GLI STUDI FILOSOFICI QUADERNI DEL TRENTENNALE 1975-2005 3 1 2 ISTITUTO ITALIANO PER GLI STUDI FILOSOFICI LEZIONI DI PREMI NOBEL Nella sede dell’Istituto Napoli 2005 3 A cura di Antonio Gargano, Segretario generale dell’Istituto Italiano per gli Studi Filosofici @ Istituto Italiano per gli Studi Filosofici Palazzo Serra di Cassano Napoli, Via Monte di Dio 14 4 INDICE PREMESSA 7 EDUARDO CAIANIELLO, Napoli perla della scienza 23 AUGUSTO GRAZIANI, Introduction to the essays of Kenneth J. Arrow 29 KENNETH J. ARROW, The Economics of Information 35 KENNETH J. ARROW, General Equilibrium and Economic Growth 47 SHELDON L. GLASHOW, La sfida della fisica delle particelle elementari 55 FRANCESCO NICODEMI, Premessa al testo di David Gross 57 DAVID GROSS, Unified Theories of Everything 63 DAVID GROSS, Teorie unificate del tutto 83 MAX F. P ERUTZ, Emoglobina, una molecola vivente 101 ILYA PRIGOGINE, Vers un humanisme scientifique 105 RITA LEVI MONTALCINI, Un nuovo ordine internazionale per la sicurezza dell’umanità 119 AUGUSTO GRAZIANI, Premessa al testo di James Tobin 123 JAMES TOBIN, Price Flexibility and Full Employment. The Debate Then and Now 133 5 SEMINARI E GIORNATE DI STUDIO DI SCIENZE E STORIA DELLE SCIENZE 147 SEMINARI E GIORNATE DI STUDIO DI STORIA E TEORIA ECONOMICA 331 6 PREMESSA L’Istituto Italiano per gli Studi Filosofici fin dalla sua fondazione ha costantemente affiancato alle attività di formazione e di ricerca in ambito filosofico e storico iniziative di ampio respiro nel campo delle scienze matematiche e naturali, persuaso della fondamentale unità della conoscenza nella ricerca della verità. Proprio al tema Unity and Internationalism of the Sciences and Humanities l’Istituto dedicò un convegno nella sede del CERN a Ginevra, alla presenza di Edoardo Amaldi.
    [Show full text]
  • Dean Rickles a BRIEF HISTORY of STRING THEORY
    THE FRONTIERS COLLECTION Dean Rickles A BRIEF HISTORY OF STRING THEORY From Dual Models to M-Theory 123 THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur Unit of Interdisciplinary Studies, Bar-Ilan University, 52900, Gières, France e-mail: [email protected] Laura Mersini-Houghton Department of Physics, University of North Carolina, Chapel Hill, NC 27599-3255 USA e-mail: [email protected] Maximilian Schlosshauer Department of Physics, University of Portland 5000 North Willamette Boulevard Portland, OR 97203, USA e-mail: [email protected] Mark P. Silverman Department of Physics, Trinity College, Hartford, CT 06106, USA e-mail: [email protected] Jack A. Tuszynski Department of Physics, University of Alberta, Edmonton, AB T6G 1Z2, Canada e-mail: [email protected] Rüdiger Vaas Center for Philosophy and Foundations of Science, University of Giessen, 35394, Giessen, Germany e-mail: [email protected] H. Dieter Zeh Gaiberger Straße 38, 69151, Waldhilsbach, Germany e-mail: [email protected] For further volumes: http://www.springer.com/series/5342 THE FRONTIERS COLLECTION Series editors A. C. Elitzur L. Mersini-Houghton M. Schlosshauer M. P. Silverman J. A. Tuszynski R. Vaas H. D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science.
    [Show full text]
  • Superstring Theory -- Have Oscillation Modes That Correspond to Massless Particles
    STRING THEORY John H. Schwarz Sao Paulo September 4, 2013 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstrings IV) Conclusion 2 I) Early History and Basic Concepts String theory arose in the late 1960s in an attempt to understand the strong nuclear force. This is the force that holds protons and neutrons together inside the nucleus of an atom. The strong nuclear force also hold quarks and gluons together inside the neutron and proton. Strongly interacting particles, such as the proton and neutron, are called hadrons. 3 A correct theory must incorporate the well- established principles of special relativity and quantum mechanics. A theory of this type, based on point-like particles, is called a quantum field theory. In addition to the strong nuclear force, the other known fundamental forces are electromagnetism, the weak nuclear force, and gravity. 4 Strings are physical objects that are curves in space. They have energy density or tension, just as point particles have mass. A theory based on strings can account for various features of the strong nuclear force such as the rich spectrum of hadrons and the high- energy behavior of interactions. The first string theory was developed in the period 1968-70 by Gabriele Veneziano and hundreds of others. 5 Two possible topologies for strings Open strings have two ends: Closed strings are loops without any ends: 6 The Basic Idea Different modes of oscillation (or quantum states) of the string behave as different particles. So, in this sense, there is a unique object (namely, the string).
    [Show full text]
  • The Evaluation of String Amplitudes
    THE EVALUATION OF STRING AMPLITUDES David B. Fairlie May 21, 2007 Abstract The geometrical approach to the evaluation of amplitudes for the ground state of strings is reviewed, and related developments are con- sidered A case is made that most of the ideas in string theory were already discovered in embryo in the fruitful years 1969-1974. 1 The Beginnings In the middle of year 1968 I was feeling very pessimistic about the possibility of theorists ever being able to say anything about scattering amplitudes for hadrons, beyond the simple tree and Regge pole approximations and was contemplating chang- ing fields. However, to everyone’s complete surprise Gabriele Veneziano came up with his famous compact form for a dual 1 amplitude; The amplitude which describes the scattering of four identical scalar particles, A(s, t, u) where is given by the sum of three terms A(s, t) + A(s, u) + A(t, u) and s t, u are the energies in the three possible ways of looking at the scattening process; If the process is considered as one where µ µ µ µ the initial momenta are p1 andp2 and the final as −p3 and − p3 2 2 then s = (p1 + p2) , t = (p1 + p3) , etc. See Figure. Each con- tribution can be expressed as an integral representation R 1 −α(s)−1 −α(t)−1 Γ(−α(s))Γ(−α(t)) A(s, t) = 0 x (1 − x) dx = Γ(−α(s)−α(t)) 0 with α(s) = α0 + α s The result is that the Veneziano ampli- tude [1] with these linear trajectories implies the existence of an infinite set of poles with multiple degeneracies.
    [Show full text]