Table of Contents More Information

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents More Information Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information Contents List of contributors page x Photographs of contributors xiv Preface xxi Abbreviations and acronyms xxiv Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string 17 gabriele veneziano 3 Gravity, unification, and the superstring 37 john h. schwarz 4 Early string theory as a challenging case study for philosophers 63 elena castellani EARLY STRING THEORY Part II The prehistory: the analytic S-matrix 81 5 Introduction to Part II 83 5.1 Introduction 83 5.2 Perturbative quantum field theory 84 5.3 The hadron spectrum 88 5.4 S-matrix theory 91 5.5 The Veneziano amplitude 97 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude 100 marco ademollo 7 The path to the Veneziano model 116 hector r. rubinstein v © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information vi Contents 8 Two-component duality and strings 122 peter g.o. freund 9 Note on the prehistory of string theory 129 murray gell-mann Part III The Dual Resonance Model 133 10 Introduction to Part III 135 10.1 Introduction 135 10.2 N-point dual scattering amplitudes 137 10.3 Conformal symmetry 145 10.4 Operator formalism 147 10.5 Physical states 150 10.6 The tachyon 153 11 From the S-matrix to string theory 156 paolo di vecchia 12 Reminiscence on the birth of string theory 179 joel a. shapiro 13 Personal recollections 191 daniele amati 14 Early string theory at Fermilab and Rutgers 193 louis clavelli 15 Dual amplitudes in higher dimensions: a personal view 198 claud lovelace 16 Personal recollections on dual models 202 renato musto 17 Remembering the ‘supergroup’ collaboration 208 francesco nicodemi 18 The ‘3-Reggeon vertex’ 214 stefano sciuto Part IV The string 219 19 Introduction to Part IV 221 19.1 Introduction 221 19.2 The vibrating string 223 19.3 The rotating rod 226 19.4 The relativistic point particle 228 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information Contents vii 19.5 The string action 230 19.6 The quantum theory of the string 231 20 From dual models to relativistic strings 236 peter goddard 21 The first string theory: personal recollections 262 leonard susskind 22 The string picture of the Veneziano model 266 holger b. nielsen 23 From the S-matrix to string theory 275 yoichiro nambu 24 The analogue model for string amplitudes 283 david b. fairlie 25 Factorization in dual models and functional integration in string theory 294 stanley mandelstam 26 The hadronic origins of string theory 312 richard c. brower TOWARDS MODERN STRING THEORY Part V Beyond the bosonic string 329 27 Introduction to Part V 331 27.1 Introduction 331 27.2 Chan–Paton factors 333 27.3 The Lovelace–Shapiro amplitude 334 27.4 The Ramond model 335 27.5 The Neveu–Schwarz model 338 27.6 The Ramond–Neveu–Schwarz model 339 27.7 World-sheet supersymmetry 341 27.8 Affine Lie algebras 344 28 From dual fermion to superstring 346 david i. olive 29 Dual model with fermions: memoirs of an early string theorist 361 pierre ramond 30 Personal recollections 373 andre´ neveu 31 Aspects of fermionic dual models 378 edward corrigan © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information viii Contents 32 The dual quark models 393 korkut bardakci and martin b. halpern 33 Remembering the dawn of relativistic strings 407 jean-loup gervais 34 Early string theory in Cambridge: personal recollections 414 claus montonen Part VI The superstring 419 35 Introduction to Part VI 421 35.1 Introduction 421 35.2 The field theory limit 423 35.3 Unification of all interactions 427 35.4 The QCD string 431 35.5 A detour on spinors 433 35.6 Spacetime supersymmetry 434 35.7 The GSO projection 437 35.8 The Kaluza–Klein reduction and supersymmetry breaking 439 35.9 The local supersymmetric action for the superstring 442 35.10 Supergravity 444 36 Supersymmetry in string theory 447 ferdinando gliozzi 37 Gravity from strings: personal reminiscences of early developments 459 tamiaki yoneya 38 From the Nambu–Goto to the σ -model action 474 lars brink 39 Locally supersymmetric action for the superstring 484 paolo di vecchia 40 Personal recollections 490 eugene` cremmer 41 The scientific contributions of Joel¨ Scherk 496 john h. schwarz Part VII Preparing the string renaissance 509 42 Introduction to Part VII 511 42.1 Introduction 511 42.2 Supergravity unification of all interactions 512 42.3 A novel light-cone formalism 514 42.4 Modern covariant quantization 518 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19790-8 - The Birth of String Theory Edited by Andrea Cappelli, Elena Castellani, Filippo Colomo and Paolo Di Vecchia Table of Contents More information Contents ix 42.5 Anomaly cancellation 521 42.6 A new era starts or, maybe better, continues 525 43 From strings to superstrings: a personal perspective 527 michael b. green 44 Quarks, strings and beyond 544 alexander m. polyakov 45 The rise of superstring theory 552 andrea cappelli and filippo colomo Appendix A Theoretical tools of the Sixties 569 Appendix B The Veneziano amplitude 579 Appendix C From the string action to the Dual Resonance Model 586 Appendix D World-sheet and target-space supersymmetry 604 Appendix E The field theory limit 620 Index 626 © in this web service Cambridge University Press www.cambridge.org.
Recommended publications
  • Particles-Versus-Strings.Pdf
    Particles vs. strings http://insti.physics.sunysb.edu/~siegel/vs.html In light of the huge amount of propaganda and confusion regarding string theory, it might be useful to consider the relative merits of the descriptions of the fundamental constituents of matter as particles or strings. (More-skeptical reviews can be found in my physics parodies.A more technical analysis can be found at "Warren Siegel's research".) Predictability The main problem in high energy theoretical physics today is predictions, especially for quantum gravity and confinement. An important part of predictability is calculability. There are various levels of calculations possible: 1. Existence: proofs of theorems, answers to yes/no questions 2. Qualitative: "hand-waving" results, answers to multiple choice questions 3. Order of magnitude: dimensional analysis arguments, 10? (but beware hidden numbers, like powers of 4π) 4. Constants: generally low-energy results, like ground-state energies 5. Functions: complete results, like scattering probabilities in terms of energy and angle Any but the last level eventually leads to rejection of the theory, although previous levels are acceptable at early stages, as long as progress is encouraging. It is easy to write down the most general theory consistent with special (and for gravity, general) relativity, quantum mechanics, and field theory, but it is too general: The spectrum of particles must be specified, and more coupling constants and varieties of interaction become available as energy increases. The solutions to this problem go by various names -- "unification", "renormalizability", "finiteness", "universality", etc. -- but they are all just different ways to realize the same goal of predictability.
    [Show full text]
  • Supergravity and Its Legacy Prelude and the Play
    Supergravity and its Legacy Prelude and the Play Sergio FERRARA (CERN – LNF INFN) Celebrating Supegravity at 40 CERN, June 24 2016 S. Ferrara - CERN, 2016 1 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - CERN, 2016 2 Prelude S. Ferrara - CERN, 2016 3 In the early 1970s I was a staff member at the Frascati National Laboratories of CNEN (then the National Nuclear Energy Agency), and with my colleagues Aurelio Grillo and Giorgio Parisi we were investigating, under the leadership of Raoul Gatto (later Professor at the University of Geneva) the consequences of the application of “Conformal Invariance” to Quantum Field Theory (QFT), stimulated by the ongoing Experiments at SLAC where an unexpected Bjorken Scaling was observed in inclusive electron- proton Cross sections, which was suggesting a larger space-time symmetry in processes dominated by short distance physics. In parallel with Alexander Polyakov, at the time in the Soviet Union, we formulated in those days Conformal invariant Operator Product Expansions (OPE) and proposed the “Conformal Bootstrap” as a non-perturbative approach to QFT. S. Ferrara - CERN, 2016 4 Conformal Invariance, OPEs and Conformal Bootstrap has become again a fashionable subject in recent times, because of the introduction of efficient new methods to solve the “Bootstrap Equations” (Riccardo Rattazzi, Slava Rychkov, Erik Tonni, Alessandro Vichi), and mostly because of their role in the AdS/CFT correspondence. The latter, pioneered by Juan Maldacena, Edward Witten, Steve Gubser, Igor Klebanov and Polyakov, can be regarded, to some extent, as one of the great legacies of higher dimensional Supergravity.
    [Show full text]
  • Curriculum Vitæ
    Curriculum Vitæ Nome : Laura Maria Andrianopoli Nazionalit`a: Italiana Data e luogo di nascita : 8 Gennaio 1969, Torino (Italia) Lingue parlate : Italiano, Inglese, Francese Posizione attuale : dal 01/11/2007 Ricercatrice Universitaria presso il Dipartimento di Fisica del Politecnico di Torino Indirizzo: C.so Duca degli Abruzzi, 24 I-10129 Torino, Italia Indirizzo e-mail : [email protected] Formazione accademica • 1994 - 1997: corso di Dottorato in Fisica presso l'Universit`adi Genova. Rela- tore: Prof. C. Imbimbo; Co-relatore: Prof. R. D'Auria Titolo della Tesi di Dottorato: \U-duality in supergravity theories and extremal black holes", discussa a Roma il giorno 8 Maggio 1998 • Luglio 1994: Laurea in Fisica Teorica presso l'Universit`adi Torino con votazione finale di 110/110 e Lode. Relatore: Prof. Ferdinando Gliozzi; Co-relatore: Prof. Riccardo D'Auria Titolo della Tesi : \Una nuova rappresentazione per l'accoppiamento dei campi scalari alla supergravit`a Attivit`adi Ricerca Borse Post-Dottorato: • 1 Novembre 2004 - 31 Ottobre 2007: Grant da parte del Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, per svolgere ricerche presso la Di- visione Teorica del CERN di Ginevra e il Dipartimento di Fisica del Politecnico di Torino. • 1 Novembre 2002 - 31 Ottobre 2004: Posizione di Fellow presso la Divisione Teorica del CERN, Ginevra • 1 Settembre 2000 - 31 Ottobre 2002: Posizione di Assegnista di Ricerca presso il Dipartimento di Fisica del Politecnico di Torino • 1 Ottobre 1998 - 31 Agosto 2000: Posizione di Post-Dottorato presso la Divi- sione Teorica dell'Universit`aK.U.Leuven, in Belgio, nell'ambito del progetto: TMR ERBFMRXCT96-0045 • 15 Febbraio 1998 - 30 Settembre 1998: Posizione di borsista presso la Divisione Teorica del CERN, Ginevra grazie al contributo della borsa Angelo Della Riccia • Conferimento della prima posizione nella graduatoria di merito del Concorso INFN a n.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Raman Sundrum July 26, 2019 CONTACT INFORMATION Physical Sciences Complex, University of Maryland, College Park, MD 20742 Office - (301) 405-6012 Email: [email protected] CAREER John S. Toll Chair, Director of the Maryland Center for Fundamental Physics, 2012 - present. Distinguished University Professor, University of Maryland, 2011-present. Elkins Chair, Professor of Physics, University of Maryland, 2010-2012. Alumni Centennial Chair, Johns Hopkins University, 2006- 2010. Full Professor at the Department of Physics and Astronomy, The Johns Hopkins University, 2001- 2010. Associate Professor at the Department of Physics and Astronomy, The Johns Hop- kins University, 2000- 2001. Research Associate at the Department of Physics, Stanford University, 1999- 2000. Advisor { Prof. Savas Dimopoulos. 1 Postdoctoral Fellow at the Department of Physics, Boston University. 1996- 1999. Postdoc advisor { Prof. Sekhar Chivukula. Postdoctoral Fellow in Theoretical Physics at Harvard University, 1993-1996. Post- doc advisor { Prof. Howard Georgi. Postdoctoral Fellow in Theoretical Physics at the University of California at Berke- ley, 1990-1993. Postdoc advisor { Prof. Stanley Mandelstam. EDUCATION Yale University, New-Haven, Connecticut Ph.D. in Elementary Particle Theory, May 1990 Thesis Title: `Theoretical and Phenomenological Aspects of Effective Gauge Theo- ries' Thesis advisor: Prof. Lawrence Krauss Brown University, Providence, Rhode Island Participant in the 1988 Theoretical Advanced Summer Institute University of Sydney, Australia B.Sc with First Class Honours in Mathematics and Physics, Dec. 1984 AWARDS, DISTINCTIONS J. J. Sakurai Prize in Theoretical Particle Physics, American Physical Society, 2019. Distinguished Visiting Research Chair, Perimeter Institute, 2012 - present. 2 Moore Fellow, Cal Tech, 2015. American Association for the Advancement of Science, Fellow, 2011.
    [Show full text]
  • Stanley Mandelstam
    I knew very early of Stanley Mandelstam I started physics as a t Prisoner of the s u Mandelstam Triangle I escaped from the Mandelstam Triangle only to be ensnared in Light-Cone Superspace A Note of Personal Gratitude 1971 NAL Visit SuperConformal Theories P. Ramond (with S. Ananth, D. Belyaev, L. Brink and S.-S. Kim) Light-Cone Superspaces N=4 Super Yang-Mills N=8 SuperConformal N=8 SuperGravity and E7(7) N=16 SuperGravity and E8(8) N=8 Light-Cone Superspace houses D=11: N=1 SuperGravity SO(9); F4/SO(9) D=4: N=8 SuperGravity SO(2)x E7(7) D=3: N=16 SuperGravity E8(8) D=2: N=16 Theory E9(9) N=4 Light-Cone Superspace habitat for D=10: N=1 Super Yang-Mills SO(8) D=4: N=4 Super Yang-Mills PSU(2,2|4) D=3: N=8 Super Conformal OSp(2,2|8) 1 i 1 ϕ (y) = 1 A (y) + i θm θn C (y) + 1θm θn θp θq $ ∂+ A¯ (y) + m n mn m n p mnpqq + ¯ ϕ (y) = +∂A (y) + √2θ θ Cmn (y) +12 θ θ θ θ $mnpq ∂ A (y) ∂ √2 √ 12 1 i 1 i m 2 m n p q m n m n p q + i+ +¯ θ χ¯m(y) + √2θ θ θ $mnpq χ (y) ϕ (y) = + A (y) + θ θ Cmn (y) + θ θ θ θ $mnpq ∂ ∂Am(y) 6 m n p q ∂ √2 12 + θ χ¯m(y) + θ θ θ $mnpq χ (y) 1 i m n 1 m n p ∂q+ + ¯ 6 ϕ (y) = A (y) + √θ θ C L(C2y) + Fθorθ maθ θ $lmnpqism∂ A (y) ∂+i m √ 2 m nmnp q12 + θ χ¯m(y) +2 θ θ θ $mnpq χ (y) 1 0 3 ∂+ 6 x± = (x x ) i √2 √ m m n p q 12 0± 3 + + θ χ¯m(y) + θ θ θ $mnpq χ (y) x± = (x x ) ∂ 6 √2 ± Light-Cone Co1ordina0 3tes: 1 0 3 x± = (x x ) ∂± = ( ∂ ∂ ) √2 ± √2 − ± 1 0 3 1 0 3 x± = (x x ) ∂± = ( ∂ ∂ ) 1 0√ 3 ± 1 1 2√2 − ±1 1 2 ∂± = ( ∂ 2∂ ) x = (x + ix ) x = (x ix ) √2 − ± √2 √2 − m m + 1 1 2 1 1 2 1 q+ , q¯+ n =1 i√2δ n ∂ x = 1(x + ix
    [Show full text]
  • Julian Schwinger: Nuclear Physics, the Radiation Laboratory, Renormalized QED, Source Theory, and Beyond
    Julian Schwinger: Nuclear Physics, the Radiation Laboratory, Renormalized QED, Source Theory, and Beyond Kimball A. Milton∗ Homer L. Dodge Department of Physics and Astronomy University of Oklahoma, Norman, OK 73019 USA October 9, 2006 Abstract Julian Schwinger’s influence on twentieth century science is pro- found and pervasive. Of course, he is most famous for his renormal- ization theory of quantum electrodynamics, for which he shared the Nobel Prize with Richard Feynman and Sin-itiro Tomonaga. But al- though this triumph was undoubtedly his most heroic work, his legacy lives on chiefly through subtle and elegant work in classical electrody- namics, quantum variational principles, proper-time methods, quan- tum anomalies, dynamical mass generation, partial symmetry, and more. Starting as just a boy, he rapidly became the pre-eminent nu- clear physicist in the late 1930s, led the theoretical development of radar technology at MIT during World War II, and then, soon after the war, conquered quantum electrodynamics, and became the leading quantum field theorist for two decades, before taking a more icono- clastic route during his last quarter century. Keywords: Julian Schwinger, nuclear physics, waveguides, quan- tum electrodynamics, renormalization, quantum action principle, source theory, axial-vector anomaly ∗K.A. Milton is Professor of Physics at the University of Oklahoma. He was a Ph.D. stu- dent of Julian Schwinger from 1968–71, and his postdoc at UCLA for the rest of the 1970s. He has written a scientific biography of Schwinger, edited two volumes of Schwinger’s se- lected works, and co-authored two textbooks based on Schwinger’s lectures.
    [Show full text]
  • STRING THEORY in the TWENTIETH CENTURY John H
    STRING THEORY IN THE TWENTIETH CENTURY John H. Schwarz Strings 2016 { August 1, 2016 ABSTRACT String theory has been described as 21st century sci- ence, which was discovered in the 20th century. Most of you are too young to have experienced what happened. Therefore, I think it makes sense to summarize some of the highlights in this opening lecture. Since I only have 25 minutes, this cannot be a com- prehensive history. Important omitted topics include 2d CFT, string field theory, topological string theory, string phenomenology, and contributions to pure mathematics. Even so, I probably have too many slides. 1 1960 { 68: The analytic S matrix The goal was to construct the S matrix that describes hadronic scattering amplitudes by assuming • Unitarity and analyticity of the S matrix • Analyticity in angular momentum and Regge Pole The- ory • The bootstrap conjecture, which developed into Dual- ity (e.g., between s-channel and t-channel resonances) 2 The dual resonance model In 1968 Veneziano found an explicit realization of duality and Regge behavior in the narrow resonance approxima- tion: Γ(−α(s))Γ(−α(t)) A(s; t) = g2 ; Γ(−α(s) − α(t)) 0 α(s) = α(0) + α s: The motivation was phenomenological. Incredibly, this turned out to be a tree amplitude in a string theory! 3 Soon thereafter Virasoro proposed, as an alternative, g2 Γ(−α(s))Γ(−α(t))Γ(−α(u)) T = 2 2 2 ; −α(t)+α(u) −α(s)+α(u) −α(s)+α(t) Γ( 2 )Γ( 2 )Γ( 2 ) which has similar virtues.
    [Show full text]
  • The Influence of Stanley Mandelstam
    The Influence of Stanley Mandelstam Michael B. Green Department of Applied Mathematics and Theoretical Physics Wilberforce Road, Cambridge CB3 0WA, UK School of Physics and Astronomy Queen Mary University of London, Mile End road, London E1 4NS, UK I hardly knew Stanley Mandelstam - our paths rarely crossed, and when they did our discussions were restricted to technical, rather than personal, issues. It is, however, an honour to be asked to write this short memoir since his work was hugely innovative and he was one of the pioneers who laid the foundations for much of the subject of my research. My interests as a PhD student in Cambridge in the late 1960's were strongly influenced by the ideas of S-matrix theory that had emerged from Berkeley, largely following the work of Chew, and Mandelstam. Stanley made use of his exceptional understanding of the analytic properties of perturbative quantum field theory to motivate a more rigorous approach to S- matrix theory. This led him to the covariant formulation of scattering amplitudes in terms of \Mandelstam variables" and to the \Mandelstam representation", which provided an elegant framework for discussing dispersion relations. He was one of the early contributors to Regge pole theory and its relation to sums of Feynman diagrams. These were the basic ingredients for much of the S-matrix programme that attempted to explain the strong interactions in the absence of a quantum field theory description. Stanley was prominent in the series of developments relating to the strong interactions that grew out of the S-matrix programme and were taking place during my period as a graduate student.
    [Show full text]
  • The Scientific Contributions of Jo¨El Scherk
    CALT-68-2723 THE SCIENTIFIC CONTRIBUTIONS OF JOEL¨ SCHERK John H. Schwarz California Institute of Technology Pasadena, CA 91125, USA Abstract Jo¨el Scherk (1946–1980) was an important early contributor to the development of string theory. Together with various collaborators, he made numerous pro- found and influential contributions to the subject throughout the decade of the 1970s. On the occasion of a conference at the Ecole´ Normale Sup´erieure in 2000 that was dedicated to the memory of Jo¨el Scherk I gave a talk entitled “Reminis- cences of Collaborations with Jo¨el Scherk” [1]. The present article, an expanded arXiv:0904.0537v1 [hep-th] 3 Apr 2009 version of that one, also discusses work in which I was not involved. Contribution to a volume entitled The Birth of String Theory 1 Introduction Jo¨el Scherk and Andr´eNeveu were two brilliant French theoretical physicists who emerged in the latter part of the 1960s. They were students together at the elite Ecole´ Normale Sup´erieure in Paris and in Orsay, where they studied electromagnetic and final-state interac- tion corrections to nonleptonic kaon decays [2] under the guidance of Claude Bouchiat and Philippe Meyer. They defended their “th`ese de troisi`eme cycle” (the French equivalent of a PhD) in 1969, and they were hired together by the CNRS that year [3]. (Tenure at age 23!) In September 1969 the two of them headed off to Princeton University. Jo¨el was supported by a NATO Fellowship.1 In 1969 my duties as an Assistant Professor in Princeton included advising some assigned graduate students.
    [Show full text]
  • The Birth of String Theory
    THE BIRTH OF STRING THEORY String theory is currently the best candidate for a unified theory of all forces and all forms of matter in nature. As such, it has become a focal point for physical and philosophical dis- cussions. This unique book explores the history of the theory’s early stages of development, as told by its main protagonists. The book journeys from the first version of the theory (the so-called Dual Resonance Model) in the late 1960s, as an attempt to describe the physics of strong interactions outside the framework of quantum field theory, to its reinterpretation around the mid-1970s as a quantum theory of gravity unified with the other forces, and its successive developments up to the superstring revolution in 1984. Providing important background information to current debates on the theory, this book is essential reading for students and researchers in physics, as well as for historians and philosophers of science. andrea cappelli is a Director of Research at the Istituto Nazionale di Fisica Nucleare, Florence. His research in theoretical physics deals with exact solutions of quantum field theory in low dimensions and their application to condensed matter and statistical physics. elena castellani is an Associate Professor at the Department of Philosophy, Uni- versity of Florence. Her research work has focussed on such issues as symmetry, physical objects, reductionism and emergence, structuralism and realism. filippo colomo is a Researcher at the Istituto Nazionale di Fisica Nucleare, Florence. His research interests lie in integrable models in statistical mechanics and quantum field theory. paolo di vecchia is a Professor of Theoretical Physics at Nordita, Stockholm, and at the Niels Bohr Institute, Copenhagen.
    [Show full text]
  • The Birth of String Theory
    The Birth of String Theory Edited by Andrea Cappelli INFN, Florence Elena Castellani Department of Philosophy, University of Florence Filippo Colomo INFN, Florence Paolo Di Vecchia The Niels Bohr Institute, Copenhagen and Nordita, Stockholm Contents Contributors page vii Preface xi Contents of Editors' Chapters xiv Abbreviations and acronyms xviii Photographs of contributors xxi Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string Gabriele Veneziano 19 3 Gravity, unification, and the superstring John H. Schwarz 41 4 Early string theory as a challenging case study for philo- sophers Elena Castellani 71 EARLY STRING THEORY 91 Part II The prehistory: the analytic S-matrix 93 5 Introduction to Part II 95 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude Marco Ademollo 115 7 The path to the Veneziano model Hector R. Rubinstein 134 iii iv Contents 8 Two-component duality and strings Peter G.O. Freund 141 9 Note on the prehistory of string theory Murray Gell-Mann 148 Part III The Dual Resonance Model 151 10 Introduction to Part III 153 11 From the S-matrix to string theory Paolo Di Vecchia 178 12 Reminiscence on the birth of string theory Joel A. Shapiro 204 13 Personal recollections Daniele Amati 219 14 Early string theory at Fermilab and Rutgers Louis Clavelli 221 15 Dual amplitudes in higher dimensions: a personal view Claud Lovelace 227 16 Personal recollections on dual models Renato Musto 232 17 Remembering the `supergroup' collaboration Francesco Nicodemi 239 18 The `3-Reggeon vertex' Stefano Sciuto 246 Part IV The string 251 19 Introduction to Part IV 253 20 From dual models to relativistic strings Peter Goddard 270 21 The first string theory: personal recollections Leonard Susskind 301 22 The string picture of the Veneziano model Holger B.
    [Show full text]
  • Pos(HRMS)078 ∗ [email protected] Speaker
    Two unforgettable years with Hector PoS(HRMS)078 Gabriele Veneziano∗ Collège de France, Paris, France and Theory Division, CERN, CH-1211 Geneva 23, Switzerland E-mail: [email protected] .......................... ........................... Quarks, Strings and the Cosmos - Hector Rubinstein Memorial Symposium August 09-11, 2010 AlbaNova (Stockholm) Sweden ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Two unforgettable years Gabriele Veneziano 1. Another lucky coincidence As a high school student in Florence I had the luck of being taught by some excellent teachers: Professor Tebaldo Liverani, in particular, was the one who initiated me to loving maths and physics. His preference, he once confessed, went to the former. However, after some hesitation, mine went to the latter as I entered the local University in 1960. Three years later I had to make another choice, this time about which branch of physics to go for. I was about to be "recruited" by the local high-energy experimental group when, just in time, Professor Raoul Gatto moved from Cagliari to Florence and "rescued" me to theoretical physics. PoS(HRMS)078 At the end of 1965 I received my "Laurea" in physics defending a thesis on some applications of the group SU(6)W . Only later I learned that the W in there apparently stood for Weizmann . Working in Florence as one of Gatto’s "gattini" was very stimulating. However, having always lived at home in my family in Florence, I felt the need to enlarge my horizons, both in physics and in life in general.
    [Show full text]