Concluding Remarks

Total Page:16

File Type:pdf, Size:1020Kb

Concluding Remarks Concluding Remarks Part I chapters give the necessary knowledge associated with cell behavior, especially when the cell reacts to various stimuli, particularly mechanical stresses. The magnitude and direction of these mechanical stresses applied by the flowing blood on the wetted surface of the endothelium as well as within the vessel wall varies during the cardiac cycle. The heart generates unsteady flows in a network of blood vessels characterized by complicated architecture and variable geometry both in space and time. Vessel geome- try varies over short distances. The vascular network of curved blood ves- sels is composed of successive geometrical singularities, mainly branchings. Three-dimensional blood flow is thereby developing, being conveyed in en- trance length (App. C.7). Moreover, blood vessels are deformable. Changes in transmural pressure (the pressure difference between the pressure at the wet- ted surface of the lumen applied by the moving blood on the vessel wall and the pressure at the external wall side, which depends on the activity on the neighbor organs) can also affect the shape of the vessel cross-section, especially when it becomes negative. More generally, the change in cross-section shape is due to taper, possible prints of adjacent organs with more or less progressive constriction and enlargment, and adaptation to branching (transition zone). These changes can induce three-dimensional blood motions displayed by vir- tual transverse currents, even if the vessel is considered straight (Part II). Local changes in the direction of stress components are caused by flow sep- aration and flow reversal during the cardiac cycle. Flow separation is set by an adverse pressure gradient when inertia forces and blood vorticity are high enough, especially in branching vascular segments. Due to the time-dependent feature of blood flow, the flow separation region spreads over a variable length during the cardiac cycle and can move. The location and variable size of the flow separation region depends on the flow distribution between the branches, which can vary during the cardiac cycle. Flow reversal occurs during the dias- tole of the left ventricle in elastic arteries, such as the aorta, and most of the muscular arteries, such as brachial and femoral arteries (but not in the carotid arteries). Flow reversal can be observed either in a region near the wall, more 490 Concluding Remarks or less wide with respect to the position of the local center of vessel curvature, or in the entire lumen. This book also provides a survey of flow modeling and simulations in the cardiovascular system. The basic knowledge of fluid mechanics necessary to understand blood flow behavior is given in part II. However, the Navier-Stokes equations, the set of partial differential equations (PDE) developed in the framework of continuum mechanics that governs the fluid flow is introduced in the following. Like any mathematical model, Navier-Stokes equations link the physical quantities that are involved in the studied process (both independent and dependent variables, time, space coordinates, temperature, pressure, ve- locity, energy, cross-section area, etc.) using equations which describe the sys- tem behavior. The mathematical model has a value only when realizable mea- surements validate the model, i.e., the model generates verifiable predictions. The Navier-Stokes equations correspond to the mathematical formulation of basic physical principles, especially the conservation of mass and momen- tum. Any fluid motion is indeed characterized by three principles: (1) the matter is neither lost nor created; (2) the variation rate of momentum of any fluid part is equal to the resulting forces (sum of all applied forces) on this fluid part; and (3) the energy is neither lost nor created. Conservation Equations Mass and momentum conservation equations are obtained from the analysis of the evolution of involved quantities in an infinitesimal control volume, the so-called fluid particle. The following differential operators are used: (1) the ∇ gradient operator =(∂/∂x1,∂/∂x2,∂/∂x 3), (2) the divergence operator ∇· ∇2 3 2 2 ∇ , and (3) the Laplace operator = i=1 ∂ /∂xi . The gradient p of scalar p is a vector of component (∇p)i = ∂ip. The gradient ∇v of vector v is a second order tensor with component (∇v)ij = ∂ivj. The first basic postulate states that matter is neither destroyed nor cre- ated, meaning that any matter finite volume neither disappers nor becomes infinite. The second basic postulate states that matter is impenetrable; any matter element does not share the same location with another element (con- tinuity axiom). ∂ The elements in presence are: (1) the mass change rate ρdV,and ∂t Ve (2) the mass flux across the surface Γe of the infinitesimal control volume 1 Ve, of unit normal n outward oriented − ρv · n dA. Using the divergence Γe theorem (Gauss formula),2 the equation of mass conservation, or the so-called equation of continuity, is obtained: 1 · = 3 The scalar product of two vectors provides a scalar: v n i=1 vini. 2 ∇·(ρv) dV = (ρv) · n dA. V Γ Concluding Remarks 491 ∂tρ + ∇·(ρv)=0. (10.2) The equation of momentum conservation of a moving fluid of mass density ρ, of dynamic viscosity µ, of kinematic viscosity ν = µ/ρ, which is conveyed with a velocity v(x,t) (x: Eulerian position, t: time) is obtained from the balance of surface and remote forces applied to the fluid particle. The elements in presence are: (1) the body forces f dV , (2) the pressure Ve forces − pn dA, (3) the viscous forces Cn dA, and (4) the inertia forces Γe Γe Dv Dv 3 4 ρ dV ,where = ∂tv +(v ·∇)v. Using the Gauss formulas, the Ve Dt Dt momentum conservation is obtained: ρ(∂tv +(v ·∇)v)=f −∇p + ∇·C. (10.3) The Navier–Stokes equations governing an unsteady flow of an incompress- ible (ρ constant) fluid in the absence of body forces are then given by: ∇· 3 The divergence ρv of the vector ρv is the scalar i=1 ∂iρvi. 3 The convective inertia term (v ·∇)v is a vector of component i magnitude given by: 3 (v ·∇)v =( vj ∂j )vi. i j=1 The convective inertia term can also be expressed either in Cartesian coordinates by the contraction product of the velocity vector and of the velocity gradient tensor v∇v, or by the divergence of the tensorial product of the velocity vector by itself ∇·(v ⊗ v) when the fluid is incompressible (∇·v =0; v ⊗ w being ( ⊗ ) = ∇·( ⊗ ) a second order tensor of component v w ij viwj , and v v a vector 3 = 3 + 3 of component j i=1 ∂ivivj i=1 vi∂ivj vj i=1 ∂ivi). The convective inertia term is also equal to: ∇(v · v)/2 − v × (∇×v). The velocity curl has components (∇×v)eˆi = ∂j vk − ∂kvj , i = j = k using circular permutation. 4 ∇pdV = pn dA. V Γ (∇·T) dV = Tn dA. V Γ The divergence ∇·T of tensor T is the vector of component: 3 (∇·T)eˆi = ∂iTij eˆi. i=1 492 Concluding Remarks ∇ · v =0, 2 ρ(vt +(v · ∇)v)=−∇pi + µ∇ v. (10.4) The Navier–Stokes equations are associated with initial and boundary condi- tions be solved. Dv 2 When the inertia term is neglected, i.e., the diffusive term µ∇ v Dt is predominant, the momentum conservation equation is called the Stokes equation: 2 ν∇ v − ∇pi/ρ =0. (10.5) The matrix A of the coefficients {aij } of the second order derivatives ∂i∂jv (i, j =1, 2, 3) is diagonal. det(λI − A)=(λ − ν)3 =0. The eigenvalue λ = ν is positive and the Stokes equation belongs to the elliptic equation class of the set of partial derivative equations. Any point of the fluid domain receives information from all neighboring points (all directions) in the context of diffusive process. Downstream events thus intervene. 2 Dv When the viscous term µ∇ v is neglected, i.e., becomes the major Dt equation term, the momentum conservation equation is called the Euler equa- tion: Dv + ∇pi/ρ =0. (10.6) Dt The Euler equation belongs to hyperbolic equation class. Informations travel in one direction given by the velocity field. The downstream region does not influence flow. A predominant convective inertia term (v · ∇)v) brings a hyperbolic fea- ture, even in the presence of temporal inertia. The time inertia ∂tv brings a parabolic feature. Flow Boundary Conditions Boundary conditions, as well as initial conditions, are required to solve the set of partial derivative equations. The boundary conditions are applied at the computational domain surface, i.e., when carrying out flow computations at the wall, entry and exits of the vasculature model (Tables 10.8, 10.9, and 10.9). The boundary of the fluid domain Ω is partioned into three surfaces: the 5 entry cross-section Γ1, the exit cross-sections Γ2 and the vessel wall Γ3. The classical no-slip condition is applied to the rigid vessel wall. A time-dependent uniform injection velocity vΓ(t) can be prescribed, at least, at the inlet, which is obtained from the Fourier transform of in vivo MR flow signals.6 At the 5 Γ3 is the fluid-structure interface, i.e., the moving boundary when the deformable wall is taken into account. 6 Most often the spatial resolution of in vivo velocity measurements is not high enough to provide velocity distribution at vessel ends, especially at the domain Concluding Remarks 493 outlet cross-sections,7 either the pressure is set to zero or, better, a stress-free condition is commonly applied. Table 10.8. A first family of boundary conditions for the Navier-Stokes equation. The boundary Γ of the fluid domain Ω is partioned into three parts Γi.
Recommended publications
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Role of Phospholipases in Adrenal Steroidogenesis
    229 1 W B BOLLAG Phospholipases in adrenal 229:1 R29–R41 Review steroidogenesis Role of phospholipases in adrenal steroidogenesis Wendy B Bollag Correspondence should be addressed Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, USA to W B Bollag Department of Physiology, Medical College of Georgia, Augusta University (formerly Georgia Regents Email University), Augusta, GA, USA [email protected] Abstract Phospholipases are lipid-metabolizing enzymes that hydrolyze phospholipids. In some Key Words cases, their activity results in remodeling of lipids and/or allows the synthesis of other f adrenal cortex lipids. In other cases, however, and of interest to the topic of adrenal steroidogenesis, f angiotensin phospholipases produce second messengers that modify the function of a cell. In this f intracellular signaling review, the enzymatic reactions, products, and effectors of three phospholipases, f phospholipids phospholipase C, phospholipase D, and phospholipase A2, are discussed. Although f signal transduction much data have been obtained concerning the role of phospholipases C and D in regulating adrenal steroid hormone production, there are still many gaps in our knowledge. Furthermore, little is known about the involvement of phospholipase A2, Endocrinology perhaps, in part, because this enzyme comprises a large family of related enzymes of that are differentially regulated and with different functions. This review presents the evidence supporting the role of each of these phospholipases in steroidogenesis in the Journal Journal of Endocrinology adrenal cortex. (2016) 229, R1–R13 Introduction associated GTP-binding protein exchanges a bound GDP for a GTP. The G protein with GTP bound can then Phospholipids serve a structural function in the cell in that activate the enzyme, phospholipase C (PLC), that cleaves they form the lipid bilayer that maintains cell integrity.
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Investigation of the Expression Pattern and Functional Importance of the Gnasxl-Encoded Xlαs Protein of the Imprinted Gnas Locus
    Investigation of the Expression Pattern and Functional Importance of the Gnasxl-encoded XLαs protein of the Imprinted Gnas Locus Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy By Katie Louise Burton May 2012 ABSTRACT XLαs is a NH2-terminal splice variant of the stimulatory G-protein α- subunit Gsα. Both are encoded by the imprinted Gnas locus. Similar to Gsα, XLαs can couple 7-TM receptors to adenylate cyclase in cultured cells. Previously, a knock-out mouse specific for the Gnasxl transcript was generated (Gnasxlm+/p-) (PLAGGE et al. 2004). This mouse model exhibits a lean, hypermetabolic phenotype with elevated sympathetic nervous system (SNS) activity (XIE et al. 2006). Changes in phenotype between neonatal and adult stages (e.g. mortality; failure to thrive as neonates vs. healthy but hypermetabolic adults) are not yet fully understood. More recently a conditional gene trap knock-out mouse line (XLlacZGT) was established. Immunohistochemistry, XGal and immunofluorescence data were collected to document the changes in expression pattern of XLαs and determine possible signalling pathways affected by lack of XLαs in the brain; histological analysis of the lacZ-containing genetrap line revealed new sites of XLαs expression. A comparison of neonatal and adult brain expression patterns revealed that the lateral hypothalamus (LH), dorsomedial hypothalamus (DMH), arcuate nucleus (Arc), locus coeruleus and ventrolateral medulla express XLαs in both stages; the laterodorsal tegmental nucleus, hypoglossal and facial nucleus (motor nuclei important for feeding) express XLαs only in neonates; and expression in the amygdala and preoptic area are only found in adult brain.
    [Show full text]
  • SF3B1-Mutated Chronic Lymphocytic Leukemia Shows Evidence Of
    SF3B1-mutated chronic lymphocytic leukemia shows evidence of NOTCH1 pathway activation including CD20 downregulation by Federico Pozzo, Tamara Bittolo, Erika Tissino, Filippo Vit, Elena Vendramini, Luca Laurenti, Giovanni D'Arena, Jacopo Olivieri, Gabriele Pozzato, Francesco Zaja, Annalisa Chiarenza, Francesco Di Raimondo, Antonella Zucchetto, Riccardo Bomben, Francesca Maria Rossi, Giovanni Del Poeta, Michele Dal Bo, and Valter Gattei Haematologica 2020 [Epub ahead of print] Citation: Federico Pozzo, Tamara Bittolo, Erika Tissino, Filippo Vit, Elena Vendramini, Luca Laurenti, Giovanni D'Arena, Jacopo Olivieri, Gabriele Pozzato, Francesco Zaja, Annalisa Chiarenza, Francesco Di Raimondo, Antonella Zucchetto, Riccardo Bomben, Francesca Maria Rossi, Giovanni Del Poeta, Michele Dal Bo, and Valter Gattei SF3B1-mutated chronic lymphocytic leukemia shows evidence of NOTCH1 pathway activation including CD20 downregulation. Haematologica. 2020; 105:xxx doi:10.3324/haematol.2020.261891 Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will
    [Show full text]
  • Márcio Lorencini Avaliação Global De Transcritos Associados Ao Envelhecimento Da Epiderme Humana Utilizando Microarranjos De
    MÁRCIO LORENCINI AVALIAÇÃO GLOBAL DE TRANSCRITOS ASSOCIADOS AO ENVELHECIMENTO DA EPIDERME HUMANA UTILIZANDO MICROARRANJOS DE DNA GLOBAL EVALUATION OF TRANSCRIPTS ASSOCIATED TO HUMAN EPIDERMAL AGING WITH DNA MICROARRAYS CAMPINAS 2014 i ii UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia MÁRCIO LORENCINI AVALIAÇÃO GLOBAL DE TRANSCRITOS ASSOCIADOS AO ENVELHECIMENTO DA EPIDERME HUMANA UTILIZANDO MICROARRANJOS DE DNA GLOBAL EVALUATION OF TRANSCRIPTS ASSOCIATED TO HUMAN EPIDERMAL AGING WITH DNA MICROARRAYS Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutor em Genética e Biologia Molecular, na área de Genética Animal e Evolução. Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Genetics and Molecular Biology, in the area of Animal Genetics and Evolution. Orientador/Supervisor: PROF. DR. NILSON IVO TONIN ZANCHIN ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO MÁRCIO LORENCINI, E ORIENTADA PELO PROF. DR. NILSON IVO TONIN ZANCHIN. ________________________________________ Prof. Dr. Nilson Ivo Tonin Zanchin CAMPINAS 2014 iii iv COMISSÃO JULGADORA 31 de janeiro de 2014 Membros titulares: Prof. Dr. Nilson Ivo Tonin Zanchin (Orientador) __________________________ Assinatura Prof. Dr. José Andrés Yunes __________________________ Assinatura Profa. Dra. Maricilda Palandi de Mello __________________________ Assinatura Profa. Dra. Bettina
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0263235 A1 CASTAGNE Et Al
    US 2016026.3235A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0263235 A1 CASTAGNE et al. (43) Pub. Date: Sep. 15, 2016 (54) PEPTIDE THERAPEUTIC CONUGATES AND (60) Provisional application No. 61/200,947, filed on Dec. USES THEREOF 5, 2008. (71) Applicant: ANGIOCHEM INC., MONTREAL (CA) Publication Classification (72) Inventors: JEAN-PAUL CASTAIGNE, (51) Int. Cl. MONT-ROYAL (CA); MICHEL A647/48 (2006.01) DEMEULE, BEACONSFIELD (CA); A638/22 (2006.01) CHRISTIAN CHE, LONGUEUIL C07K I4/575 (2006.01) (CA); CARINE THIOT, PREAUX (52) U.S. Cl. (FR): CATHERINE GAGNON, CPC ..... A61K47/48246 (2013.01); C07K 14/57563 MONTREAL-NORD (CA); BETTY (2013.01); A61 K38/2278 (2013.01); C07K LAWRENCE, BOLTON (CA) 14/5759 (2013.01); A61 K38/2264 (2013.01) (21) Appl. No.: 14/696, 193 (57) ABSTRACT (22) Filed: Apr. 24, 2015 The present invention features a compound having the for mula A-X-B, where A is peptide vector capable of enhancing Related U.S. Application Data transport of the compound across the blood-brain barrier or (63) Continuation of application No. 13/133,002, filed on into particular cell types, X is a linker, and B is a peptide Aug. 9, 2011, now abandoned, filed as application No. therapeutic. The compounds of the invention can be used to PCT/CA2009/001781 on Dec. 7, 2009. treat any disease for which the peptide therapeutic is useful. Patent Application Publication Sep. 15, 2016 Sheet 1 of 49 US 2016/0263235 A1 Peptides Amino acid Sequence : Exendin-4 native 3. HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS Exendin-4-Lys(MHA) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPK-(MHA) (CyS32)-Exendin-4 HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPCSGAPPPS .
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]