The Search for Extraterrestrial Life

Total Page:16

File Type:pdf, Size:1020Kb

The Search for Extraterrestrial Life The Search answer personal questions about the significance of our role in the universe and what we can accomplish. Presum- ably, an answer might also show us how to obtain important scientific and technological information from other civilizations—knowledge we would not otherwise gain except by hundreds of years of hard, expensive effort. Thus the question of whether extraterrestrial intelligence exists is important for rea- sons that range from the most profound philosophical level to the very practical and technical levels. Nowadays we generally break the question into two parts. First we ask about our expectations for intelligent life in space based on what we know of biology, the arrangement of the uni- verse, and the laws of physics. This part guides us about the difficulty of parameters, no gamma functions, no more than 10 per cent of the stars have the search, the possible closeness of the sines or cosines, or such—it tells us planetary systems. As yet, though, we nearest civilizations, the expected num- that all the things we need to know are haven’t confirmed that estimate to any ber of civilizations in the galaxy, and equally important. The chain of factors degree of certainty. Models of plane- the range of life that might be found. is only as strong as its weakest link. tary formation suggest there will be two These answers in turn serve as guidance The product of all the factors except planets in each system suitable for life, for the second, more practical ques- the last one gives the rate of production but there is no physical evidence other tion: What is the most promising way of potentially detectable civilizations in than our own system to support such an to search for that life? the galaxy. Using the best numbers we answer to this astrophysical question. have, which frequently are only crude Now we come to the questions about guesses, we arrive at a rate of about life. What fraction of potential life- How Many Other Worlds? one per year. If we now multiply by bearing planets give rise to life? The The number of detectable civilizations the mean longevity of highly technical experiments that have been done now in N that might exist in our galaxy can civilizations L, we find the total number a host of laboratories show a multitude be represented by the nice, neat equa- of detectable civilizations in the galaxy: of pathways giving rise to the chemicals tion shown above. In this equation the of life. Moreover, if that is not good “good suns” associated with fs are stars Now all these factors are, in fact, enough, these chemicals seem to be car- whose production of light has the length questions. The rate of star formation is ried in from outer space by comets and and constancy needed for the evolution an astronomical question, and we hap- asteroids. It is pretty clear that we know of intelligent life. Also, the fraction of pen to know the answer quite well— quite a bit about this question: the frac- intelligent species fc that achieve elec- about twenty per year since the birth of tion must be very close to one. tromagnetic communication are those the galaxy. Realistically, this number is The next three factors—the fraction that develop the technology needed to the only one we know well. We know of living systems that give rise to in- make them detectable in the galaxy. the fraction of good suns fairly well, but telligence, the fraction of those that The equation plays two roles. First, it the fraction of stars that have planets give rise to technology, and finally the tells us what we need to know: Looking is currently seen only through a glass longevity—are fascinating in them- at it, we see what the other unanswered darkly. Intimations of planet forma- selves, and I will dwell on these fac- questions about life are. Second, be- tion in the disks of dust around nearby tors a little more than on the previous cause the equation is a simple product— stars, in the detection of a brown dwarf ones. In fact, we usually quickly wave there are no exponential or logarithmic around a star, and so forth suggest that our hands over the last factor and move 52 Los Alamos Science Fellows Colloquium 1988 The Search on, but it is one of the most important BRAIN-BODY WEIGHT RATlO unanswered questions about life. Is Intelligence Inevitable? Until recently the fraction of systems that give rise to intelligence was quite controversial. Intelligence was believed to be the artifact of a limited series of freak events in the course of evolution and thus occurred only rarely in sys- tems of living things. In other words, it was thought to be an anomaly in the universe—a view that some people still hold. However, over the years evidence has increased to support the idea that intelligence will arrive by one or an- other of many evolutionary paths. If one examines the fossil record, the only feature that one always sees increas- 0.01 1 100 10000 ing in power or size is the brain. We have had larger creatures, faster flying Body Weight (kilograms) creatures, faster running creatures, more vicious creatures, but we have never Fig. 1. A logarithmic plot of brain weight ver- thirds power relationship. The average statis- had creatures on the surface of the earth sus body weight for living mammals, living tical increase in brain mass for a given body that were smarter than the ones we have reptiles, archaic mammals, and archaic rep- weight over those 70 million years has been on today. In fact, many studies of the cra- tilea, where archaic means 70 million years the order of a factor of 10, but the 20-fold in- nial capacity of creatures have shown ago during the age of the dinosaurs. The plot crease for the mammals is significantly larger the increase in intelligence to be very shows that each group follows the typical two- than the 4-fold increase for the reptiles. monotonic over the course of time. Figure 1 shows the distribution of brain mass versus body weight both for weight and brain weight than the re- creature will appear on a life-supporting reptiles and mammals living now and gion occupied by the living reptiles. planet. In fact, if competition did not for archaic reptiles and mammals that But when we compare mammals to rep- take its toll, there would most likely lived about seventy million years ago tiles at a given body weight, we find the eventually be a large number of intelli- in the period before the Cretaceous- archaic mammals have approximately gent creatures on each planet. Tertiary boundary. Surprisingly, we four times the brain mass of the archaic An interesting bit of evidence for this find for each group not a scatter dia- reptiles, whereas the living mammals last conjecture is the recent discovery of gram but a well-defined relationship in have twenty times the brain mass of the dinosaurs that had relatively large brain which brain mass goes essentially as living reptiles. Although the change is masses. Their brains were not as large body weight to the two-thirds power, more dramatic for the mammals than as those of humans by any stretch of a rule that has applied through all evo- for the less evolutionarily advanced rep- the imagination, but the mass was larger lutionary eras for which we have good tiles, there has been a definite increase than that of the typical dinosaur brain. data. for both. One can make plots using dif- These creatures include one known as Each of the four groups shown in ferent or more finely divided time inter- an ostrich dinosaur that lived in Mongo- Fig. 1 occupies a clearly defined re- vals, and one always finds a monotonic lia and the northern United States, one gion. For example, the archaic reptiles increase in brain size with time. with the delightful name of Stenony- (the dinosaurs) were, of course, much The host of statistical evidence show- chosaurus inegualis that stood about larger than current reptiles, and they ing the increase supports the idea that, six feet tall and weighed a little over a occupy a region higher both in body in one way or another, an intelligent hundred pounds, and my favorite, a cute Los Alamos Science Fellows Colloquium 1988 53 The Search critter called Saurornithoides, which slowly rotate in space with its long means reptile with feet like a bird. axis pointed toward the sun (Fig. 3). The saurornithoides (Fig. 2) had about Huge mirrors, inclined to reflect sunlight the same height and weight as we do, through windows, would create daylight stood on its feet using its forearms as inside. Initially, one might think that a we use our arms, and had the equiv- space colony would be a horrible place alent of an opposable thumb. It used to live, but it could be delightful with its intelligence and its “hands” to catch landscapes, lakes, rivers, and a force its favorite food, rat-like animals—the resembling the earth’s gravity due to things that Jack Sepkoski calls vermin— A SAURORNITHOIDES the slow rotation (a few revolutions a that were the original mammals, our minute) of the colony. Moreover, you ancestors. Most interesting, the sauror- Fig. 2. This relatively intelligent dinosaur used could have a bug-free environment and nithoides had a rather large brain case: its “hands” and intelligence to catch vermin, made-to-order weather: open the mir- Its brain mass was not the few grams our mammalian ancestors.
Recommended publications
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Program and Abstract Book
    Program and Abstract Book Precision Asteroseismology: Celebration of the Scientific Opus of Wojtek Dziembowski Date: 19 – 23 August 2013, Location: WrocÃlaw (Poland) Scientific Organizing Committee: Annie Baglin (France) Bill Chaplin (UK) Jørgen Christensen-Dalsgaard (Denmark) Margarida Cunha (Portugal) Jadwiga Daszy´nska-Daszkiewicz (Chair, Poland) Gilles Fontaine (Canada) Joyce Guzik (USA) Marcella Marconi (Italy) Karen Pollard (New Zealand) Hiromoto Shibahashi (Chair, Japan) Juan Carlos Su´arez(Spain) Werner Weiss (Austria) Local Organizing Committee: Urszula Bąk-Stęślicka Barbara Cader-Sroka Jadwiga Daszyńska-Daszkiewicz (Chair) Zbigniew Kołaczkowski Grzegorz Kopacki Andrzej Pigulski (Chair) Marek Stęślicki Przemysław Walczak 1 2 PROGRAM OF THE SYMPOSIUM DAY 1. August 19, Monday Session 1. Introduction Chair: Jadwiga Daszy´nska-Daszkiewicz 8:00 – 9:00 Registration and setting up posters 9:00 – 9:20 Welcome and opening 9:20 – 10:20 An overview of the scientific career of Wojtek Dziem- bowski by Douglas Gough (30 min) & Alexey Pamyatnykh (30 min) 10:20 – 10:50 Coffee break Chair: Jørgen Christensen-Dalsgaard 10:50 – 11:30 Introductory talk: What can we expect from precision asteroseismology (Gerald Handler) Session 2. Observations: from ground to space 11:30 – 12:00 Pulsating variables from the OGLE and Araucaria pro- jects (Grzegorz Pietrzy´nski,invited) 12:00 – 12:30 A review of pulsating stars from the ASAS data (Andrzej Pigulski, invited) 12:30 – 12:45 Asteroseismology with SuperWASP (Barry Smalley) 12:45 – 13:00 A new class of low amplitude
    [Show full text]
  • Matching the Spectral Energy Distribution and P Mode Oscillation Frequencies of the Rapidly Rotating Delta Scuti Star Α Ophiuchi with a 2D Rotating Stellar Model
    Matching the Spectral Energy Distribution and p Mode Oscillation Frequencies of the Rapidly Rotating Delta Scuti Star α Ophiuchi with a 2D Rotating Stellar Model Robert G. Deupree, Diego Castañeda, Fernando Peña, and C. Ian Short Institute for Computational Astrophysics and Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 Canada; [email protected] ABSTRACT Spectral energy distributions are computed using 2D rotating stellar models and NLTE plane parallel model atmospheres. A rotating, 2D stellar model has been found which matches the observed ultraviolet and visible spectrum of α Oph. The SED match occurs for the interferometrically deduced surface shape and inclination, and is different from the SED produced by spherical models. The p mode oscillation frequencies in which the latitudinal variation is modelled by a linear combination of eight Legendre polynomials were computed for this model. The five highest and seven of the nine highest amplitude modes show agreement between computed axisymmetric, equatorially symmetric mode frequencies and the mode frequencies observed by MOST to within the observational error. Including nonaxisymmetric modes up through |m| = 2 and allowing the possibility that the eight lowest amplitude modes could be produced by modes which are not equatorially symmetric produces matches for 24 out of the 35 MOST modes to within the observational error and another eight modes to within twice the observational error. The remaining three observed modes can be fit within 4.2 times the observational error, but even these may be fit to within the observational error if the criteria for computed modes are expanded.
    [Show full text]
  • FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
    FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile
    [Show full text]
  • The Brightest Stars Seite 1 Von 9
    The Brightest Stars Seite 1 von 9 The Brightest Stars This is a list of the 300 brightest stars made using data from the Hipparcos catalogue. The stellar distances are only fairly accurate for stars well within 1000 light years. 1 2 3 4 5 6 7 8 9 10 11 12 13 No. Star Names Equatorial Galactic Spectral Vis Abs Prllx Err Dist Coordinates Coordinates Type Mag Mag ly RA Dec l° b° 1. Alpha Canis Majoris Sirius 06 45 -16.7 227.2 -8.9 A1V -1.44 1.45 379.21 1.58 9 2. Alpha Carinae Canopus 06 24 -52.7 261.2 -25.3 F0Ib -0.62 -5.53 10.43 0.53 310 3. Alpha Centauri Rigil Kentaurus 14 40 -60.8 315.8 -0.7 G2V+K1V -0.27 4.08 742.12 1.40 4 4. Alpha Boötis Arcturus 14 16 +19.2 15.2 +69.0 K2III -0.05 -0.31 88.85 0.74 37 5. Alpha Lyrae Vega 18 37 +38.8 67.5 +19.2 A0V 0.03 0.58 128.93 0.55 25 6. Alpha Aurigae Capella 05 17 +46.0 162.6 +4.6 G5III+G0III 0.08 -0.48 77.29 0.89 42 7. Beta Orionis Rigel 05 15 -8.2 209.3 -25.1 B8Ia 0.18 -6.69 4.22 0.81 770 8. Alpha Canis Minoris Procyon 07 39 +5.2 213.7 +13.0 F5IV-V 0.40 2.68 285.93 0.88 11 9. Alpha Eridani Achernar 01 38 -57.2 290.7 -58.8 B3V 0.45 -2.77 22.68 0.57 144 10.
    [Show full text]
  • Anousheh Ansari
    : Fort Worth Astronomical Society (Est. 1949) August 2010 Astronomical League Member At the August Meeting: Special Guest Anousheh Ansari Club Calendar – 2 – 3 Skyportunities Star Party & Club Reports – 5 House Calls by Ophiuchus – 6 Hubble’s Amazing Rescue – 8 Your Most Important Optics -- 9 Stargazers’ Diary – 11 1 Milky Way Over Colorado by Jim Murray August 2010 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 Third Qtr Moon Challenge binary star for August: Make use of the New Viking 1 Orbiter 11:59 pm Moon Weekend for Alvan Clark 11 (ADS 11324) (Serpens Cauda) ceases operation better viewing at the 30 years ago Notable carbon star for August: Dark Sky Site Mars : Saturn O V Aquilae 1.9 Conjunction Mercury at greatest Challenge deep-sky object for August: eastern elongation Venus, Mars and Abell 53 (Aquila) Saturn all within a this evening binocular field of First in-flight New Moon view for the first 12 New Moon shuttle repair Neal Armstrong Weekend Weekend days of August. 15 years ago born 80 years ago 8 9 10 11 12 13 14 New Moon Moon at Perigee Double shadow (224,386 miles) transit on Jupiter 3RF Star Party 10:08 pm 1 pm 5:12am High in SSW Museum Star (A.T. @ 5:21 am) Party Venus : Saturn O . 3 of separation Perseid Meteor Watch Party @ 3RF New Moon Magellan enters Fairly consistent show Weekend orbit around Venus of about 60 per hour 20 years ago 15 16 17 18 19 20 21 Algol at Minima 2:45 am - In NE First Qtr Moon Total Solar 1:14 pm Eclipse in 7 years Nearest arc of totality takes in FWAS Grand Island NE St Joseph MO Meeting With Neptune @ Columbia MO Venus at greatest Opposition Anousheh Algol at Minima eastern elongation N of Nashville TN 11:34pm Low In NE 5 am N of Charleston SC Ansari this evening 22 23 24 25 26 27 28 Full Moon Moon at Apogee 2:05 pm (252,518.miles) GATE CODES Smallest of 2010 1 am to the (within 11 hrs of apogee) DARK SKY SITE will be changed st September 1 BE SURE YOU ARE CURRENT WITH DUES to Astroboy’s Day Job Venus : Mars receive new codes O 2 Conjunction 29 31 30 Anousheh Ansari’s Mission Patch at right.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • Appendix I Authors and Editors
    Appendix I Authors and editors Frances Bagenal (editor) Ofer Cohen Laboratory for Almospheric and Space Harvard-Smithsonian Center for Physics Astrophysics UCB 600 University of Colorado 60 Garden St. 3665 Discovery Drive Cambridge, MA 02138, USA Boulder, CO 80303, USA email: [email protected] email: [email protected] Debra Fischer Mario M. Bisi Department of Astronomy, Science and Technology Facilities Yale University, Council New Haven, CT 06520, USA Rutherford Appleton Laboratory email : [email protected] Harwell, Oxford OX 11 OQX, UK email: Mario.Bisi@<;lfc.ac.uk Marina Galand Department of Physics Stephen W. Boughcr Imperial CoHege London Atmospheric, Oceanic, and Space Prince Consort Road Science Department London SW7 2AZ, UK 2455 Hayward Avenue email: [email protected] University of Michigan Ann Arbor, MT 48109, USA Mihaly Horanyi email: [email protected] Laboratory for Almospheric and Space Physics, and David Brain Department of Physics Laboratory for Atmospheric and Space Un iversiLy of Colorado, Boulder, CO Physics 80303, USA University of Colorado email: Mihaly.Horanyi@Jasp. 3665 Discovery Drive colorado.edu Boulder, CO 80303, USA email: [email protected] 327 328 Appe11dL\ I A11rliors and editors Margaret G. Kivel son Palo Alto, CA 94304- I 191, USA Department of Earth, Planetary, and email: [email protected] Space Sciences University of California, Los Angeles David E. Siskind Los Angeles, CA 90095-1567. USA Space Science Division and Naval Research Laboratory Department of Atmospheric, Oceanic 4555 Overlook Ave. SW and Space Sciences Washington DC, 20375, USA University of Mi chigan email: [email protected] Ann Arbor, MI 48109-2143, USA Jan J.
    [Show full text]
  • Architecture for Space-Based Exoplanet Spectroscopy in the Mid- Infrared
    Architecture for space-based exoplanet spectroscopy in the mid- infrared Joseph Green*, Case Bradford, Thomas Gautier, Michael Rodgers, Erkin Sidick and Gautam Vasisht Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 ABSTRACT Characterizing exoearths at wavelength about 10 micron offers many benefits over visible coronagraphy. Apart from providing direct access to a number of significant bio-signatures, direct-imaging in the mid-infrared can provides 1000 times or more relaxation to contrast requirements while greatly shortening the time-scales over which the system must be stable. This in-turn enables tremendous relief to optical manufacturing, control and stability tolerances bringing them in- line with current technology state of the art. In this paper, we explore a reference design that co-optimizes a large segmented linearized aperture telescope with one-dimensional phase-induced aperture apodization providing high-contrast imaging for spectroscopic analysis. By rotating about a parent star, the chemical signatures of its planets are characterized while affording additional means for background suppression. Keywords: Exoplanet Spectroscopy, Segmented Space Telescopes, Strip Apertures, PIAA, Mid-Infrared, Coronagraphy 1. INTRODUCTION There have been many concepts over the years pursuing the objective direct imaging and characterization of exoearths in the visible wavelengths. The Terrestrial Planet Finder Coronagraph (TPFC) mission was an earlier examples that found in the baseline
    [Show full text]
  • A Corner of Ophiuchus for Binoculars by John Flannery, SDAS
    A corner of Ophiuchus for binoculars by John Flannery, SDAS PPEARING OVER the southeastern horizon as tinguish from foreground stars randomly scattered we slip into Summer is Ophiuchus, the across the field. “SerpentA Bearer”. The pattern is becoming well placed Keeping Cr 350 at the west (right) edge of the at the moment for observers that wish to plumb the 20x60s will enable the double star S694 to fall within constellation for the rich array of deep sky objects to be the same field of view at the eastern edge. Remember found within its boundaries. that while my binoculars have a 3° field, lower power A large dim constellation that abuts the Milky instruments will have a wider field of view. S694 is a Way, it has 13 stars above fourth magnitude with pair of almost equal magnitude suns (+6.9 and +7.1 Rasalhague, or Alpha Ophiuchi, a second magnitude respectively) with a separation of 82 arcseconds. The sun marking the head of Æsculapius, the mythological two were easily split with both appearing dusky-grey in figure whom the constellation represents. Eight de- tint – probably because of the hazy sky at the time. grees roughly to the south of this star is Beta (+2.7), Next up is a non-existant object, or rather, a now- or Cheleb, marking the start point for our tour. defunct constellation. From a dark site you may spy a Just north of cream-coloured Beta is the loose open downward pointing triangular-shaped group of stars cluster IC 4665. My 20x60mm binoculars showed nu- with the naked eye about 8° east of Beta.
    [Show full text]
  • 1455189355674.Pdf
    THE STORYTeller’S THESAURUS FANTASY, HISTORY, AND HORROR JAMES M. WARD AND ANNE K. BROWN Cover by: Peter Bradley LEGAL PAGE: Every effort has been made not to make use of proprietary or copyrighted materi- al. Any mention of actual commercial products in this book does not constitute an endorsement. www.trolllord.com www.chenaultandgraypublishing.com Email:[email protected] Printed in U.S.A © 2013 Chenault & Gray Publishing, LLC. All Rights Reserved. Storyteller’s Thesaurus Trademark of Cheanult & Gray Publishing. All Rights Reserved. Chenault & Gray Publishing, Troll Lord Games logos are Trademark of Chenault & Gray Publishing. All Rights Reserved. TABLE OF CONTENTS THE STORYTeller’S THESAURUS 1 FANTASY, HISTORY, AND HORROR 1 JAMES M. WARD AND ANNE K. BROWN 1 INTRODUCTION 8 WHAT MAKES THIS BOOK DIFFERENT 8 THE STORYTeller’s RESPONSIBILITY: RESEARCH 9 WHAT THIS BOOK DOES NOT CONTAIN 9 A WHISPER OF ENCOURAGEMENT 10 CHAPTER 1: CHARACTER BUILDING 11 GENDER 11 AGE 11 PHYSICAL AttRIBUTES 11 SIZE AND BODY TYPE 11 FACIAL FEATURES 12 HAIR 13 SPECIES 13 PERSONALITY 14 PHOBIAS 15 OCCUPATIONS 17 ADVENTURERS 17 CIVILIANS 18 ORGANIZATIONS 21 CHAPTER 2: CLOTHING 22 STYLES OF DRESS 22 CLOTHING PIECES 22 CLOTHING CONSTRUCTION 24 CHAPTER 3: ARCHITECTURE AND PROPERTY 25 ARCHITECTURAL STYLES AND ELEMENTS 25 BUILDING MATERIALS 26 PROPERTY TYPES 26 SPECIALTY ANATOMY 29 CHAPTER 4: FURNISHINGS 30 CHAPTER 5: EQUIPMENT AND TOOLS 31 ADVENTurer’S GEAR 31 GENERAL EQUIPMENT AND TOOLS 31 2 THE STORYTeller’s Thesaurus KITCHEN EQUIPMENT 35 LINENS 36 MUSICAL INSTRUMENTS
    [Show full text]