Linear Structural Trends and Multi-Phase Intergrowths in Helvine-Group Minerals, (Zn,Fe,Mn)8[Be6si6o24]S2

Total Page:16

File Type:pdf, Size:1020Kb

Linear Structural Trends and Multi-Phase Intergrowths in Helvine-Group Minerals, (Zn,Fe,Mn)8[Be6si6o24]S2 minerals Article Linear Structural Trends and Multi-Phase Intergrowths in Helvine-Group Minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2 Sytle M. Antao Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada; [email protected] Abstract: Synchrotron high-resolution powder X-ray diffraction (HRPXRD) and Rietveld structure refinements were used to examine the crystal structure of single phases and intergrowths (either two or three phases) in 13 samples of the helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. The helvine structure was refined in the cubic space group P43n. For the intergrowths, simultaneous refinements were carried out for each phase. The structural parameters for each phase in an intergrowth are only slightly different from each other. Each phase in an intergrowth has well-defined unit-cell and structural parameters that are significantly different from the three endmembers and these do not represent exsolution or immiscibility gaps in the ternary solid-solution series. The reason for the intergrowths in the helvine-group minerals is not clear considering the similar radii, identical charge, and diffusion among the interstitial M cations (Zn2+, Fe2+, and Mn2+) that are characteristic of elongated tetrahedral coordination. The difference between the radii of Zn2+ and Mn2+ cations is 10%. Depending on the availability of the M cations, intergrowths may occur as the temperature, pressure, fugacity f S2, and fluid composition change on crystallization. The Be–Si atoms are fully ordered. The Be–O and Si–O distances are nearly constant. Several structural parameters (Be–O–Si bridging angle, M–O, M–S, average <M–O/S>[4] distances, and TO4 rotational angles) vary linearly with the a unit-cell parameter across the series because of the size of the M cation. Citation: Antao, S.M. Linear Structural Trends and Multi-Phase Intergrowths in Helvine-Group Keywords: helvine-group minerals; crystal chemistry; ternary solid solution; zoning; intergrowths; Minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. HRPXRD; linear structural variations Minerals 2021, 11, 325. https:// doi.org/10.3390/min11030325 Academic Editor: Sergey V. 1. Introduction Krivovichev The helvine-group minerals with the general formula (Mn,Fe,Zn)8[Be6Si6O24]S2 occur in granites, pegmatites, contact metamorphic rocks, and skarns. The endmembers have Received: 1 March 2021 interstitial M cations where M = Zn2+ (genthelvite), Fe2+ (danalite), and Mn2+ (helvine). Accepted: 18 March 2021 The latter was formerly called helvite. Helvine is the most common, follow by danalite, and Published: 20 March 2021 genthelvite is by far the rarest. Helvine-group minerals form an isomorphous series that is isostructural with sodalite, Na8[Al6Si6O24]Cl2 [1,2]. The Al atom in sodalite corresponds Publisher’s Note: MDPI stays neutral to the Be atom in helvine-group minerals, the Na to the M atom, and the Cl to the S with regard to jurisdictional claims in atom. The crystal structure of the helvine-group minerals is known [1–6]. Reports on published maps and institutional affil- the high-temperature behavior of some sodalite-group minerals are available [7–11]. The iations. framework structure of the helvine-group minerals consists of an ordered distribution of BeO4 and SiO4 tetrahedra that are linked to form four- and six-membered rings that create the sodalite or zeolite β cage, which contains tetrahedral SM4 clusters (Figure1). The M cation is coordinated by three framework O atoms and one S atom in an elongated Copyright: © 2021 by the author. tetrahedral configuration. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Minerals 2021, 11, 325. https://doi.org/10.3390/min11030325 https://www.mdpi.com/journal/minerals Minerals 2021, 11, x FOR PEER REVIEW 2 of 22 Minerals 2021, 11, 325 2 of 22 ØSi ØB FigureFigure 1. 1.Projection Projection of of the the structure structure of of helvine-group helvine-group minerals minerals down down [001] [001] showing showing the the lower lower half half of theof the unit unit cell. cell. The The BeO BeO4 4 4 4 (yellow)(yellow) and and SiO SiO4 (green) (green) tetrahedra tetrahedra alternate alternate in in the the four- four- and and six-membered six-membered rings. rings. The The angles angles of of rotation rotation of of these these TO TO4 tetrahedratetrahedra from from the the fully fully expanded expanded to theto the partially partially collapsed collapsed structure structure are are indicated indicated by ØBeby Ø andBe and ØSi. ØSi The. The S atomS atom is shownis shown with large circles (grey), and the M (= Mn, Fe, Zn) cations (violet) are on the body diagonals. The unit-cell edges are shown with large circles (grey), and the M (= Mn, Fe, Zn) cations (violet) are on the body diagonals. The unit-cell edges are shown (black lines). (black lines). OscillatoryOscillatory zoning zoning is is common common in in garnet garnet and and plagioclase plagioclase and and is is based based on on repetitious repetitious compositionalcompositional variations variations that that result result from from cyclical cyclical changes changes in in the the chemical chemical environment environment duringduring crystal crystal growth. growth. A A zoned zoned genthelvite genthelvite sample sample from from the the Cairngorm Cairngorm Mountains, Mountains, Scot- Scot- land,land, has has been been reported reported [ 12[12].]. MarkedMarked lineline splittingsplitting in in a a large large diameter diameter (11.46 (11.46 cm) cm) was was ob- observedserved with with an X-ray camera, notnot detectabledetectable onon filmsfilms taken taken with with a a small small diameter diameter (6 (6 cm) cm) camera,camera, indicating indicating the the presence presence of of more more than than one one helvine-group helvine-group phase phase in in the the powder. powder. The The 79 16 5 oscillatoryoscillatory zoning zoning varies varies in in composition composition from from a central a central region region of Gof79 GD16DH5H(G (G = genthelvite,= genthelvite, DD = danalite,= danalite, and and H H = helvine)= helvine) to ato crustal a crustal coating coating around around G29 GD2938DH3833H.33 Zoned. Zoned genthelvite genthelvite samplessamples from from the the Aïr Aïr Mountains, Mountains, Niger, Niger, have have also also reported reported [13 [13].]. Oscillatory Oscillatory zoning zoning in in helvine-grouphelvine-group minerals minerals was was also also reported reported by by other other researchers researchers [14 [14–19].–19]. For For excellent excellent im- im- agesages of of oscillatory oscillatory zoning zoning in in helvine, helvine, see see Figure Figure 3 in3 in Raade Raade [19 [19].]. Powder Powder X-ray X-ray diffraction diffraction hashas detected detected intergrowths intergrowths in in several several other other minerals minerals [20 [20–22].–22]. AA geometrical geometrical model model for for a structurea structure based based on on the the sodalite sodalite framework framework topology topology is is availableavailable [23 [23],], with with the the assumption assumption that that the the interframework interframework ions ions (Na, (Na, K, K, Ca, Ca, Cl, Cl, OH, OH, H 2HO,2O, SOSO4,4 etc.), etc.) have have nono effecteffect on th thee Si–O Si–O and and Al–O Al–O distances. distances. The The helvine-group helvine-group minerals minerals pro- providevide an an ideal ideal opportunity opportunity to examine to examine the theisolated isolated effect effect of only of onlyinterframework interframework M cations M cationson analogous on analogous Be–O Be–O and andSi–O Si–O distances, distances, together together with with the the use use of ofthe the sodalite sodalite model model to toexplain explain variations variations in in structural structural parameters. parameters. CompleteComplete miscibility miscibility occurs occurs between between the the Fe 2+Feand2+ and Mn Mn members members and and between between the the Fe 2+Fe2+ andand Zn Zn members, members, but but an an immiscibility immiscibility gap gap exists exists between between the the Mn Mn and and Zn Zn members members [14 [14].]. Minerals 2021, 11, 325 3 of 22 The pure endmembers helvine and genthelvite occur naturally, but danalite is about 86% of the Fe2+ endmember. Danalite is the only endmember that could not be synthesized in an early study [24], but was later synthesized [25]. Based on the crystal structure, the radii of the M atoms, and the sodalite model, complete miscibility should exist among the three endmembers [1,23]. The lack of pure danalite in nature may indicate that another phase may be more stable relative to danalite. Pure danalite (a = 8.203(1) Å) has been synthesized, as well as the mixed M cation varieties, (Mn4Fe4)[Be6Si6O24]S2 with a = 8.223(1) Å, and (Fe4Zn4)[Be6Si6O24]S2 with a = 8.097(1) Å [25]. Mössbauer studies of these samples showed quadrupole splitting, especially for the mixed M cation varieties. A zero-quadrupole split- ting is expected if the anions surrounding the Fe2+ ion are identical. However, quadrupole splitting may also be explained by zoned intergrowths with slightly different compositions. The sodalite structure has also been modeled by several researchers [26–30]. These models have been used to analyze the structural and thermal-expansion behavior of alumi- nosilicate sodalite [23]. The sodalite framework topology is in a partially-collapsed state because of the relatively small non-framework interstitial ions [6]. Heating (or substitu- tion) causes the framework tetrahedra to rotate in a cooperative manner. This rotational mechanism is described in terms of the angles ØSi and ØAl through which the distinct TO4 tetrahedra are rotated relative to their position in the fully expanded state (see Figure 2 in Hassan and Grundy [23]). Linear trends in structural parameters are expected for the helvine-group minerals, but only general trends were observed in a previous single-crystal study [1].
Recommended publications
  • Topographical Index
    997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?),
    [Show full text]
  • The Stability of Danalite, Feober(Sior3s Donero M. Bunr
    American Mineralogist, Volume 65, pages 355-360, 1980 The stability of danalite, FeoBer(SiOr3S DoNero M. Bunr Department of Geology, Arizona State University Tempe,Arizona 85281 Abstract End-memberdanalite is compositionallyequivalent to a mixture of pyrrhotite, phenakite, and fayalite, but danalite's natural occurrenceswith pyrite, magnetite,and quartz suggest that it is stable under somewhat more sulfidizing conditions than pyrrhotite and more oxidiz- ing conditions than fayatte. Danalite tends not to occur with hematite. Thesefacts can be usedto constructa tentative log /",-log f o,diagtan for the stability of the end member. The diagram shows that danalite, if it is stable at all, has an extremely narrow stability field cen- tered near the pyrrhotite,/magnetitefield boundary. Outside this field, phenakite (or, at low temperatures,bertrandite) is stablewith magnetite,pyrrhotite (or pyrite), and quartz. A natu- ral example of theseequilibria apparently occurs at Iron Mountain, Bartlett, New Hamp- shire, where zoned danalite-helvite solid solutions occur as overgrowths on phenakite with magnetite,pyrite, and quartz. Danalite is the only end memberof the helvite group that is appreciablysensitive to hypo- gene oxidation. The Mn and Zn end,members helvite and genthelviteare instead sensitive only to S-O exchange(variation in log /",//",). Introduction 2 FeoBe,(SiOo)rS:2 FeS+ 3 Be,SiOo+ 3 FerSiOo Danalite, FeoBer(SiOo)rS,is a rare beryllium ore danalite: troilite * phenakite* fayalite mineral in iron-rich skarns,greisens, and related me- Troilite (Tr) is not a common terrestrial phase; for tasomaticrocks (Glasset al., 19441,Beus, 1966; Dunn, the purposesofthis discussionit can be replacedby 1976). lt typically contains considerable helvite, pyrrhotite, Fe,-,S.
    [Show full text]
  • Σ3O12, Henritermierite, Ca3mn2[(Sio4)2(O4H4)1]Σ3, (OH,F)-Spessartine, Mn2+3Al2[(Sio4)2(O4H4,F4)1]Σ3, and Hausmannite, Mn3o4
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-08-21 Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn2+3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 Cruickshank, Laura Ann Cruickshank, L. A. (2018). Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn2+ 3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 (Unpublished master's thesis).. University of Calgary, Calgary, AB. doi:10.11575/PRISM/32836 http://hdl.handle.net/1880/107656 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, 2+ Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn 3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 by Laura Ann Cruickshank A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA AUGUST, 2018 © Laura Ann Cruickshank 2018 ii ABSTRACT This study considers the crystal chemistry of some rare garnet-group minerals of the general [8] [6] [4] formula X3 Y2 Z3O12 including kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, 2+ Ca3Mn2[(SiO4)2(O4H4)1]Σ3, and (OH,F)-spessartine, Mn 3Al2[(SiO4)2(O4H4,F4)1]Σ3.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Diamond Dan's Mineral Names Dictionary
    A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.
    [Show full text]
  • Mineralogy and Petrology of the Amazonite Pegmatite at Bakstevalåsen, Øvre Eiker
    Master Thesis, Department of Geosciences Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Master Thesis in Geosciences Discipline: Geology Department of Geosciences Faculty of Mathematics and Natural Sciences University of Oslo July 2013 © Øyvind Sunde, 2013 Supervised by associate prof. Rune S. Selbekk and prof. Tom Andersen Cover picture: Hand specimen of the amazonite pegmatite at Bakstevalåsen measuring a 15 cm cross-section with amazonite matrix and abundant danalite. This work is published digitally through DUO – Digitale Utgivelser ved UiO http://www.duo.uio.no It is also catalogued in BIBSYS (http://www.bibsys.no/english) All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Acknowledgements This thesis marks the end of a 5 –year period of time with relentless studies at the Department of Geosciences, University of Oslo. There are many people I have met during this 5-year ride who in various ways have contributed in shaping my interest for geology. I have never, ever, regretted my decision on setting sail onto this journey. You all know who you are and a huge thank you! My thesis would not have been possible without the help of several clever individuals, and I would like to aim a special appreciation to the following personnel: Rune Selbekk: first of all, thank you for letting me volunteer at the natural History Museum during my infant years of studying. It brought more geology into a curriculum diluted with meteorology and philosophy.
    [Show full text]
  • Abstract Introduction Danalite, Fe4be3(Si04)3S, Is a Rare
    American Mineralogist, Volume 65, pages 355-360, 1980 DONALD M. BURT Department of Geology, Arizona State University Tempe, Arizona 85281 Abstract End-member danalite is compositionally equivalent to a mixture of pyrrhotite, phenakite, and fayalite, but danalite's natural occurrences with pyrite, magnetite, and quartz suggest that it is stable under somewhat more sulfidizing conditions than pyrrhotite and more oxidiz- ing conditions than fayalite. Danalite tends not to occur with hematite. These facts can be used to construct a tentative log f s,-log f 0, diagram for the stability of the end member. The diagram shows that danalite, if it is stable at all, has an extremely narrow stability field cen- tered near the pyrrhotite/magnetite field boundary. Outside this field, phenakite (or, at low temperatures, bertrandite) is stable with magnetite, pyrrhotite (or pyrite), and quartz. A natu- ral example of these equilibria apparently occurs at Iron Mountain, Bartlett, New Hamp- shire, where zoned danalite-helvite solid solutions occur as overgrowths on phenakite with magnetite, pyrite, and quartz. Danalite is the only end member of the helvite group that is appreciably sensitive to hypo- gene oxidation. The Mn and Zn end members helvite and genthelvite are instead sensitive only to 8-0 exchange (variation in log f s,lf 0,)' Introduction 2 Fe4Be3(Si04)3S = 2 FeS + 3 BezSi04 + 3 FezSi04 Danalite, Fe4Be3(Si04)3S, is a rare beryllium ore danalite = troilite + phenakite + fayalite mineral in iron-rich skarns, greisens, and related me- Troilite (Tr) is not a common terrestrial phase; for tasomatic rocks (Glass et aI., 1944; Beus, 1966; Dunn, the purposes of this discussion it can be replaced by 1976).
    [Show full text]
  • Seventh Day GEOLOGY of the OTANMÄKI MINE
    Seventh day GEOLOGY OF THE OTANMÄKI MINE - by Ole Lindholm and Risto Anttonen Introduction Investigating methods Location The magnetite-ilmenite deposits at Otanmaki are distinguished by their heterogeneity. Several The Otanmäki mine (stop 7) lies close to the hundred known ore lenses are spread over a geographical Centre of Finland, south of the fairly large zone. Lenses of unequal size con- large lake Oulujarvi. The nearest town is taining abundant gangue inclusions and often Kajaani, about 40 km to the east. The mine and with illdefined boundaries occur capriciously. adjacent plants employ about 650 persons. Mining geology has to provide an exceptionally large amount of detailed information to aid the design of the stopes and to direct the stoping. About 45 000-50 000 m of investigation drilling is required annually. To make this economically Discover_y and deoelopment feasible, diamond drilling is supplemented and The history of the discovery of Otanmaki is partly replaced by inexpensive and fast per- very similar to that of other ore deposits found cussion drilling. With the percussion drilling in the thirties. In 1937 two magnetite-ilmenite no sludge samples are taken, instead the holes floats were found about 40 km southeast of are surveyed geophysically by permeameter, Otanmaki. One year later, in 1938, their source which is calibrated to show the magnetite con- was pinpointed on the basis of magnetic indica- tent of the rock. This method is made viable tions. Further studies revealed several smaller by the constant magnetite-ilmenite ratio in the magnetite-ilmenite deposits within a radius of ore. The annual amount of percussion drilling 10 km around Otanmaki.
    [Show full text]
  • J. P. Cooke on Danalite from Rockport, Mass. ART. XL-On Danalite, a New
    J. P. Cooke on Danalite from Rockport, Mass. 73 ART. XL-On Danalite, a new Mineral Species from the (banite of Rockport, Mass.; by JOSIAH P. COOKE, Jr. DISSDINATED through the Rockport granite, which is quar­ ried at the extremity of Cape Ann, Massachusetts, and much used for building in Boston and the vicinity, are occasional ~in8 of o.llesh-red mineral somewhat resembling Rhodonite. The mineral has heen at times found in masses of considerable size, and for a s~ecimen of this sort I am indebted to the kind­ ness of Mr. W. J. Knowlton, ~f the Lawrence Scientific School. The characters of the mineral are as follows: Color, Besh· red to gray. ' Str~ similar in color to the mineral but lighter. Lustre, vitreo·resinous. Translucent. Fracture subconchoidal uneven. Brittle. Hardness 6'6 to 6. Specific gravity-two de· terminations-S·427. The exterior portion of the mass showed no indication of crystalline (orm and there was no distinct cleavage j but on breaking it open a well developed octahedron of the regular system was found in the interior. The angle be· tween the oetaliedral faces measured with an application gonia ometer 1090 80'. The· edges of the octahedron were replaced by planes of a rhombic dodecahedron, strongly striated parallel to the longer diagonal of the face. The mineral, tberefore, crys­ tallizes in the holohedral forms of the monometric svstem. Before the blowpipe the mineral readily fuses on the edges to a black enamel. Hence its fusibility is about 4 of von Kobell's scale. On charcoal with carbonate of soda it giv~ a slight coating of oxyd of zinc.
    [Show full text]
  • Amazonite: Mineralogy, Crystal Chemistry, and Typomorphism
    Amazonite: Mineralogy, Crystal Chemistry, and Typomorphism Mikhail Ostrooumov Institute of Earth Sciences, University of Michoacan of San Nicolas of Hidalgo, Morelia, Mexico AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA Copyright © 2016 Elsevier Inc. All rights reserved. This English language edition is a translation of original Russian language edition titled Амазонский камень, ISBN 978-5-7325-0675-4 Copyright notice: © Издательство “Политехника“, 2008. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and kno wledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • 39015003287979.Pdf
    PROPERTY Ok¢ izma ART S\RI TAS T_ ( + r F p THE LITERATURE OF GEOLOGIC OCCURRENCES OF BERYLLIUM by Robert M. Dickey Submitted in partial fulfillment of the requirenents for the degree of Master of Science Department of Geology University of Michigan Ann Arbor, Michigan April, 1931 (qt During the past few years certain industrial developments have led to a demand for a metal or an alloy which combines lightness, durability, strength, and workability. Chief among those industries requiring such a substance is the man- ufacture of aircraft, both lighter- and heavier-than-air types. In fact, so great is the need in this field that it has been said that the progress made along such lines during the past twenty-five years will. be as nothing compared to the rapid strides which will follow such a discovery. With this in mind, numerous investigators have begun a search for a metal which will c onform to all the above re- quirements, and the result has been a greatly stimulated interest in the element beryllium, which seems to most sat- isfactorily fulfill the needs mentioned. The metallurgical problems governing the recovery of the metal from its ores have been studied with great care, and it may be stated that in a reasonable period of time such difficulties will no longer exist. The present trend is toward fusion methods and an electrolysis similar to that employed in removing aluminum from its ores, and the most notable advances are being made in France and Germany. The greatest problem then, at present, is to locate commercial deposits of beryllium ores, and such prospecting is being constantly carried on, spurred by encouraging statements from individuals prominent in mining fields, pre- dicting important discoveries in the near future.
    [Show full text]
  • Download the Scanned
    NOTES AND NEWS GENTHELVITE CRYSTALFROM EL PASOCOUNTY, COLORADO Jawnrr. J. Gr,lss, U. S. GeologicalSuroey, Washington 25, D. C., AND JonN W. ArAus, U. S. GeologicalSurvey, Denaer, Colorado. The St. Peters Dome-Stove Mountain area near Colorado Springs, El Paso County, Colo., has been the source of many unusual minerals found in pegmatites in the Pikes Peak granite. One of the rarer minerals of these pegmatites is genthelvite, the zinc member of the helvite group. Until recently this specieswas representedonly by a single small speci- men discoveredin the 1890'sand now in the Genth Collection at Pennsyl- vania State College,State College,Pa. In March 1949J. W. Adams, accompaniedby Edwin Over of Colorado Springs, made a brief visit to the area, and in excavating a small miaro- Iitic pegmatite he discovered a large crystal of genthelvite, apparently the largest known crystal of any member of the helvite group. This crys- tal is 5.5 cm long, 4 cm thick, and weighs 72 grams. It is a somewhat distorted combination of the positive and negative tetrahedrons with narrow rounded faces of the rhombic dodecahedron.Because the com- bined positive and negative tetrahedrons form a geometrical octahedron, this crystal simulates a distorted octahedron. The tetrahedral faces of this crystal are etchedl those of one tetrahedron are more etched than those of the other. The genthelvite-bearingpegmatite is on a ridge west of the Gold Camp Road (Corley Mountain Highway) in the NW| sec.4,T. 15 S., R. 67 W., El Paso County, Colo. The pegmatite, except for the presenceof genthel- vite, is similar to many other pegmatites in the area.
    [Show full text]