Lamiaceae) Species from Iran Received: May 15, 2013; Accepted: July 15, 2013

Total Page:16

File Type:pdf, Size:1020Kb

Lamiaceae) Species from Iran Received: May 15, 2013; Accepted: July 15, 2013 Progress in Biological Sciences Vol. 3, Number. 2, Summer/Fall 2013/81-98 Identification of flavonoids in leaves of seven wild growing Salvia L. (Lamiaceae) species from Iran Received: May 15, 2013; Accepted: July 15, 2013 Navaz Kharazian1* 1- Department of Botany, Faculty of Sciences, University of Shahrekord, Shahrekord, Iran ABSTRACT This study documents the flavonoid constituents of seven Salvia species in Iran namely S. atropatana Bunge, S. limbata C. A. Mey, S. sclarea L., S. ceratophylla L., S. multicaulis Vahl., S. hydrangea Dc. ex Benth., and S. eremophila Boiss. The studied species were collected from their natural habitats in Iran and were analyzed for their flavonoid constituents using two- dimensional thin layer chromatography with silica gel 60F 254 as solid phase. The purification of flavonoid compounds of each species was carried out using column chromatography with sephadex LH20. Based on the results, 53 flavonoid compounds were identified. The most frequent flavonoid subclasses among seven Salvia species were flavones (35.7%) and the least of these were dihydroflavonoles (5.3%). The most important structural variation observed in flavonoid was related to hydroxylation patterns. Among the identification of flavonoid, eight of them were reported for the first time inSalvia species of Iran. The highest numbers of flavonoid compounds were identified in S. multicaulis and S. hydrangea. It can be concluded that the flavonoid constituents seem to be a suitable indicator in chemotaxonomic studies in Salvia genus. Key Words: identification, Iran, Lamiaceae, leaves, flavonoid, Salvia . * Corresponding author: [email protected] Review Article Perspectives in taxonomy and phylogeny of the genus Astragalus (Fabaceae): a review Shahin Zarre*, Nasim Azani Center of Excellence in Phylogeny of Living Organisms and Department of Plant Science, School of Biology, College of Science, University of Tehran, Tehran, Iran Received: November 10, 2012; Accepted: November 24, 2012 Abstract The genus Astragalus L. (Fabaceae) is reviewed from both phyloenetic and taxonomic points of view. As the largest genus of flowering plants it has attracted many researchers, but much work remains to be done. A short taxonomic history with special focus on infrageneric classification of the genus, a list of phylogenetic studies including the applied markers and sampling strategies as well as a short discussion on evolution of morphological characters are presented. Keywords: Astragalus, Fabaceae, Taxonomy, Phylogeny Introduction R.Br. and few small genera (5). The taxonomy and phylogeny of Astragalus are very challenging. In With some 2900 species distributed in both Old- the present paper we will review the background of (1; ca. 2400 spp.) and New World (2; ca. 500 spp.), taxonomic and phylogenetic studies on Astragalus, Astragalus L. is by far the largest genus of the sources of complexity in the taxonomy and flowering plants, following by Bulbophyllum phylogeny of the genus, and future perspectives in Thouars of Orchidaceae with approximately 2032 studies on this genus. species and Psychotria L. of Rubiaceae comprising about 1951 species (1). The plants vary from short living annual herbs (ca. 80 spp.) to perennial rhizomatous or hemicryptophytic herbs (ca. 2500 Taxonomic background spp.) and to cushion forming spiny shrubs (ca. 300 Since its description in volume 2 of ‘Species species) in habit (Fig. 1). Most species grow in Plantarum’ (6), Astraglus has been subjected to semi-arid and arid areas throughout the world, but many taxonomic studies aiming mostly to achieve a few species prefer humid habitats (e.g. a natural subgeneric classification. Among these A. glycyphyllos L.), or are known as weeds. The systems, Bunge’s (7) classification of the genus in plants show the typical papilionaceous flowers and 1868 into eight subgenera and 105 sections, has are characterized by any unique morphological been widely used until recently (8, 9). Based on synapomorphy. As a result of this fact, the detailed morphological studies with emphasis on delimitation of the genus is sometimes very indumentum type (focusing on hair attachment: difficult and the assignment of some species (such basifixed vs. medifixed), Podlech (10) explained as A. annularis Forssk.) to this genus is doubtful the convergent nature of many of the and not supported by phylogenetic studies (2-4). morphological characters used in the delimitation According to recent investigations, the genus is of subgenera as proposed by Bunge (7) and currently placed in the well supported Astrgalean reduced the number of recognized subgenera to clade of tribe Galegeae s. l. close to genera three: subgen. Astragalus, subgen. Cercidothrix Oxytropis DC., Phyllolobium Fisch., Colutea L., Bunge and subgen. Trimeniaeus Bunge. He also Lessertia DC., Swainsona Salisb., Carmichaelia considered a unique position for tragacanthic * Corresponding author: [email protected] ©2013 Progress in Biological Sciences Tel.: +98-21-61112482 Introduction around the world such as antiviral, antitumor, antioxidant, etc. (24). Salvia L. genus with about 1000 species worldwide and 55 species in Iran, is the As Iran is one of the centers of diversity largest genera of Lamiaceae. It is distributed for Salvia species and the flavonoid all around the world, in temperate, compounds of this genus have not been subtropical, arctic and sub- arctic areas identified, there is a need for elucidating as well as the tropical regions of Iran (1, this genetic resource in this country. 2). Some of these species are perennial, Accordingly, this study aims to identify the herbaceous, suffruticose, fruticose and flavonoid constituents from seven Salvia sub shrubby (1, 3). Salvia genus displays species such as S. atropatana Bunge, S. a remarkable range of variation and sclarea L., S. ceratophylla L., S. limbata C. represents an enormous and cosmopolitan A. Mey., S. multicaulis Vahl., S. hydrangea distribution (2). The main speciation Dc. ex Benth. and S. eremophila Boiss. and centers of this taxon are considered to the reveal the chemotaxonomic value of these east of Mediterranean regions, south- west, compounds. western, eastern and central Asia, South Africa and central and South America (2, Materials and methods 4, 5). In recent years, studies on chemical Plant materials compounds of plant species were generally Seven Salvia species were collected from their constrained to the phenols and essential natural habitats in Iran (Table 1). The voucher oils (6). Salvia genus is a rich source of specimens were deposited in the Herbarium of phenolic compounds, essential oils and Shahrekord University (HSU). polysaccharides (6, 7, 8, 9, 10, 11). The flavonoid constituents have been generally Extraction and identification methods identified in some of Salvia species (12, 13, 14, 15, 16, 17, 18, 19, 20, 21). Lu and Foo Extraction of flavonoids was based on the (6) revealed that the flavonoid constituents in protocol suggested by Markham (25). The Salvia genus were mostly present as flavones, flavonoids were extracted from air-dried flavonols and their glycosides. Furthermore, leaf sample (10.5 g) of seven Salvia species B-ring and A-ring substitutions, oxygenation using 85% MeOH at 60°C. The extracts on the A-ring in c6 and/or c6 plus c8 positions were concentrated using a rotary evaporator were detected in Salvia genus, and mono- at 70°C for total solvent removal. The substituted (4') and di-substituted (3',4') separation of chlorophyll was initiated with H O at 60°C, filtered by Whatman paper B-ring are frequent (22). Investigation of 2 the chemical compounds of Salvia extracts and carotenoid pigments were removed can probably help to better understand the from the flavonoid extracts using n-BuOH. biological potential and the taxonomic The flavonoid extracts were separated from relationships among the investigated species n-BuOH using a rotary evaporator at 85°C (23). It is known that Salvia species are used in and solved in 100% MeOH. Subsequently, traditional medicines and natural activity all the crude extract was analyzed by two- dimensional thin layer chromatography Progress in Biological Sciences Vol. 3, Number 2, Summer/ Fall 2013 82 (TLC; 3 µm, 20× 20 cm) on silica gel MeOH 20% mixture) in 100 ml MeOH 60F 254 (15 mg silica gel, 67.5 ml H2O). solution (with increasing MeOH content Silica gel plates with the following solvent 20%, 40%, 60%, 80%, 100% and Acetone) systems were used: 1) BuOH-C2H4O2- and extracted in fractions (the amount of H2O (BAW 3:1:1V/V/V) representing an packing material is 50 ml for each MeOH organic system and 2) H2O- C2H4O2 (WA content 20%, 40%, 60%, 80%, 100% and 85:15V/V) representing an aqueous system. Acetone). The fractions were subjected to Spots' detection with natural product one dimensional thin layer chromatography identifiers (H2SO4/ MeOH solution) was on silica gel plates (3 µm). Identification of performed under UV-366 nm (26). The purified compounds was performed on the purification of flavonoid compounds of basis of their UV spectra (366 nm), MeOH each species was carried out using column solution and shift reagents such as AlCl3, chromatography (65 × 3 cm) with sephadex AlCl3/HCl, NaOAc, NaOAc/H3Bo3 and LH20 Sigma- Aldrich (Sephadex and MeOH. Table 1. The locality of Salvia species in their natural habitats from Iran Table 1. The locality of Salvia species in their natural habitats from Iran Species Locality Height (m) S. hydrangea (114) Fars- Abadeh; 31°08'N (latitude), 52°40'E (longitude); July 2010 1800 S. multicaulis (148) Isfahan- Semirom, Vanak; 31°32'N (latitude), 51°25'E (longitude); July 2010 1950 S. ceratophylla (144) Chaharmahal va Bakhtiari- Bostanshir; 32°05'N (latitude), 50°55'E (longitude); July 2010 2120 S. sclarea (139) Isfahan-Daran, Damane; 33°01'N (latitude), 50°29'E (longitude); August 2010 1856 S. atropatana (142) Kordestan- Marivan; 35°30'N (latitude), 46°25'E (longitude); August 2010 1820 S. limbata (125) Chaharmahal va Bakhtiari- Saman, Horeh; 32°32'N (latitude), 50°45'E (longitude); July 2010 2070 S.
Recommended publications
  • Trifolium Pratense Extract Induces Apoptosis and Decreases Nitric Oxide Secretion in Human Umbilical Vein Endothelial Cell
    WCRJ 2020; 7: e1508 TRIFOLIUM PRATENSE EXTRACT INDUCES APOPTOSIS AND DECREASES NITRIC OXIDE SECRETION IN HUMAN UMBILICAL VEIN ENDOTHELIAL CELL F. KHAZAEI1, M.H. FARZAEI2, S. KHAZAYEL3, M. KHAZAEI2 1Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran 2Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran 3Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran Abstract – Objective: Angiogenesis plays a critical role in tumor growth and metastasis. En- dothelial cell proliferation has been used as an in vitro model of angiogenesis. Trifolium pratense was suggested for cancer treatment in traditional medicine and scientific report. The present study was designed to investigate the effect of T. pratense hydroalcoholic extract on the human umbilical vein endothelial cell (HUVEC) apoptosis and nitric oxide (NO) secretion in vitro. Materials and Methods: Hydroalcoholic extract of T. pratense was prepared and its different concentrations (0, 12.5, 25, 50, 100, 200, 400, 800 μg/ml) were used for cell treatment. Cell viability was assessed by trypan blue, MTT and lactate dehydrogenase methods. Furthermore, nitric oxide (NO) secretion of the cells was measured by Griess reaction, and their apoptosis was evaluated by fluorescent dyes staining. One-way ANOVA was used for data analysis. Results: After 24, 48 and 72 hours treatments, the IC50 values were 1069.35, 174.70 and 68.07 μg/ml, respectively. T. pratense extracts exerted a significant difference between the groups treated compared to the control group (p<0.05) and increasing the dose significantly decreased cell via- bility. T. pratense extract significantly increased LDH in dose- and time-dependent manners in the cell culture medium (p<0.05).
    [Show full text]
  • Antiproliferative Effects of Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal Tract 1
    [CANCER RESEARCH 53, 5815-5821, December 1, 1993] Antiproliferative Effects of Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal Tract 1 Kazuyoshi Yanagihara, 2 Akihiro Ito, Tetsuya Toge, and Michitaka Numoto Department of Pathology [K. Y, M. N.], Cancer Research [A. L], and Surgery iT. T.], Research Institute for Nuclear Medicine and Biology, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734, Japan ABSTRACT MATERIALS AND METHODS Seven isoflavones, biochanin A, daidzein, genistein, genistin, prunectin, Establishment of Cancer Cell Lines. Tumor tissues were trimmed of fat puerarin, and pseudobaptigenin were tested for cytostatic and cytotoxic and necrotic portions and minced with scalpels. The tissue pieces were trans- effects on 10 newly established cancer cell lines of the human gastrointes- ferred, together with medium, at 10 to 15 fragments/dish to 60-mm culture tinal origin. Proliferation of HSC-41E6, HSC-45M2, and SH101-P4 stom- dishes (Falcon, Lincoln Park, N J). The patient's ascitic tumor cells were ach cancer cell lines was strongly inhibited by biochanin A and genistein, harvested by centrifugation (1000 rpm for 10 min) and plated into 60-mm whereas other stomach, esophageal, and colon cancer lines were moder- dishes. Culture dishes initially selectively trypsinized [trypsin, 0.05% (w/v); ately suppressed by both compounds. Biochanin A and genistein were EDTA, 0.02% (w/v)], to remove overgrowing fibroblasts. In addition, we cytostatic at low concentrations (<20 pg/ml for biochanin A, <10/tg/ml for attempted to remove the fibroblasts mechanically and to transfer the tumor genistein) and were cytotoxic at higher concentrations (>40 pg/ml for cells selectively.
    [Show full text]
  • Light and Temperature Conditions Affect Bioflavonoid Accumulation In
    Plant Cell Tiss Organ Cult DOI 10.1007/s11240-014-0502-8 RESEARCH NOTE Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush) Adam Kokotkiewicz • Adam Bucinski • Maria Luczkiewicz Received: 20 March 2014 / Accepted: 26 April 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Callus cultures of the endemic South-African maintained at 24 °C. On the contrary, elevated temperature legume Cyclopia subternata were cultivated under varying (29 °C) applied during the second half of the culture period light and temperature conditions to determine their influ- resulted in over 300 and 500 % increase in CG and PG ence on biomass growth and bioflavonoids accumulation. content (61.76 and 58.89 mg 100 g-1, respectively) while Experimental modifications of light included complete maintaining relatively high biomass yield. darkness, light of different spectral quality (white, red, blue and yellow) and ultraviolet C (UVC) irradiation. The calli Keywords Hesperidin Á In vitro cultures Á Isoflavones Á were also subjected to elevated temperature or cold stress. Light spectral quality Á Temperature regime Á UVC Among the tested light regimes, cultivation under blue irradiation light resulted in the highest levels of hesperidin (H)— 118.00 mg 100 g-1 dry weight (DW) on 28 days of Abbreviations experiment, as well as isoflavones: 7-O-b-glucosides of CG Calycosin 7-O-b-glucoside calycosin (CG), pseudobaptigenin (PG) and formononetin 4-CPPU N-(2-chloro-4-pyridyl)-N0-phenylurea (FG)—28.74, 19.26 and 10.32 mg 100 g-1 DW, respec- (forchlorfenuron) tively, in 14-days old calli.
    [Show full text]
  • Isolation, Identification and Characterization of Allelochemicals/Natural Products
    Isolation, Identification and Characterization of Allelochemicals/Natural Products Isolation, Identification and Characterization of Allelochemicals/Natural Products Editors DIEGO A. SAMPIETRO Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina CESAR A. N. CATALAN Instituto de Química Orgánica Universidad Nacional de Tucumán, Tucumán Argentina MARTA A. VATTUONE Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina Series Editor S. S. NARWAL Haryana Agricultural University Hisar, India Science Publishers Enfield (NH) Jersey Plymouth Science Publishers www.scipub.net 234 May Street Post Office Box 699 Enfield, New Hampshire 03748 United States of America General enquiries : [email protected] Editorial enquiries : [email protected] Sales enquiries : [email protected] Published by Science Publishers, Enfield, NH, USA An imprint of Edenbridge Ltd., British Channel Islands Printed in India © 2009 reserved ISBN: 978-1-57808-577-4 Library of Congress Cataloging-in-Publication Data Isolation, identification and characterization of allelo- chemicals/natural products/editors, Diego A. Sampietro, Cesar A. N. Catalan, Marta A. Vattuone. p. cm. Includes bibliographical references and index. ISBN 978-1-57808-577-4 (hardcover) 1. Allelochemicals. 2. Natural products. I. Sampietro, Diego A. II. Catalan, Cesar A. N. III. Vattuone, Marta A. QK898.A43I86 2009 571.9’2--dc22 2008048397 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher, in writing. The exception to this is when a reasonable part of the text is quoted for purpose of book review, abstracting etc.
    [Show full text]
  • An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
    AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support.
    [Show full text]
  • IN SILICO ANALYSIS of FUNCTIONAL Snps of ALOX12 GENE and IDENTIFICATION of PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS
    Tulasidharan Suja Saranya et al. Int. Res. J. Pharm. 2014, 5 (6) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article IN SILICO ANALYSIS OF FUNCTIONAL SNPs OF ALOX12 GENE AND IDENTIFICATION OF PHARMACOLOGICALLY SIGNIFICANT FLAVONOIDS AS LIPOXYGENASE INHIBITORS Tulasidharan Suja Saranya, K.S. Silvipriya, Manakadan Asha Asokan* Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Viswa Vidyapeetham University, AIMS Health Sciences Campus, Kochi, Kerala, India *Corresponding Author Email: [email protected] Article Received on: 20/04/14 Revised on: 08/05/14 Approved for publication: 22/06/14 DOI: 10.7897/2230-8407.0506103 ABSTRACT Cancer is a disease affecting any part of the body and in comparison with normal cells there is an elevated level of lipoxygenase enzyme in different cancer cells. Thus generation of lipoxygenase enzyme inhibitors have suggested being valuable. Individual variation was identified by the functional effects of Single Nucleotide Polymorphisms (SNPs). 696 SNPs were identified from the ALOX12 gene, out of which 73 were in the coding non-synonymous region, from which 8 were found to be damaging. In silico analysis was performed to determine naturally occurring flavonoids such as isoflavones having the basic 3- phenylchromen-4-one skeleton for the pharmacological activity, like Genistein, Diadzein, Irilone, Orobol and Pseudobaptigenin. O-methylated isoflavones such as Biochanin, Calycosin, Formononetin, Glycitein, Irigenin, 5-O-Methylgenistein, Pratensein, Prunetin, ψ-Tectorigenin, Retusin and Tectorigenine were also used for the study. Other natural products like Aesculetin, a coumarin derivative; flavones such as ajoene and baicalein were also used for the comparative study of these natural compounds along with acteoside and nordihydroguaiaretic acid (antioxidants) and active inhibitors like Diethylcarbamazine, Zileuton and Azelastine as standard for the computational analysis.
    [Show full text]
  • Phenolic Constituents of Trifolium Resupinatum Var. Minus: Protection Against Rosiglitazone Induced Osteoporosis in Type 2 Diabetic Male Rats
    Journal of Applied Pharmaceutical Science Vol. 7 (05), pp. 174-183, May, 2017 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2017.70530 ISSN 2231-3354 Phenolic constituents of Trifolium resupinatum var. minus: Protection against rosiglitazone induced osteoporosis in type 2 diabetic male rats Mona E. S. Kassem1*, Mona M. Marzouk1, Amani A. Mostafa2, Wagdy K. B. Khalil3, Hoda F. Booles3 1Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt. 2Department of Ceramics, Laboratory of Nanomedicine and Tissue Engineering, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt. 3Department of Cell Biology, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt. ABSTRACT ARTICLE INFO Article history: Thiazolidinediones, an antidiabetic drug, promote bone loss and provoke fractures, suggesting a protective role Received on: 26/12/2016 of phytoestrogens rich herbal supplement along with rosiglitazone. The aqueous methanol extract (AME) of Accepted on: 09/03/2017 Trifolium resupinatum L. var. minus Boiss. (Fabaceae) and defatted AME (DAME) protective effects were Available online: 30/05/2017 assessed against rosiglitazone (Ros) inducing osteoporosis in type 2 diabetic male rats. Eighty male Albino rats (10/group) were used. OPG, RANKL and β2- microglobulin serum levels, femur BMD (Dexa) and OC, COL Key words: and ACP5 osteogenic genes mRNA (qRT-PCR) were evaluated in Ros-rats + AME or DAME (24, 12, 6 mg/kg Persian clover, bw/d, each). Ros-rats + DAME (24 mg/kgbw) revealed the most significant effects on bone biomarkers. It Thiazolidinediones, diabetes, modulated OPG (ng mL-1), RANKL (pg mL-1) and β2- microglobulin (μg mL-1) serum levels.
    [Show full text]
  • Science Based Authentication of Dietary Supplements
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2010 Science Based Authentication of Dietary Supplements: Studies on the Chemical Constituents, Analytical Method and Biological Activities of Scutellaria Spp and Pfaffiaaniculata P Jing Li Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Plant Sciences Commons Recommended Citation Li, Jing, "Science Based Authentication of Dietary Supplements: Studies on the Chemical Constituents, Analytical Method and Biological Activities of Scutellaria Spp and Pfaffiaaniculata P " (2010). Electronic Theses and Dissertations. 179. https://egrove.olemiss.edu/etd/179 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. SCIENCE BASED AUTHENTICATION OF DIETARY SUPPLEMENTS ---STUDIES ON THE CHEMICAL CONSTITUENTS, ANALYTICAL METHOD AND BIOLOGICAL ACTIVITIES OF SCUTELLARIA SPP AND PFAFFIA PANICULATA KUNTZE A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Pharmacognosy The University of Mississippi JING LI Nov. 2010 Copyright © 2010 by Jing Li All rights reserved ii ABSTRACT During the last decade, the use of herbal medicine has expanded globally and gained popularity. With the tremendous expansion in the use of herbal medicine worldwide, safety and efficacy as well as quality control of herbal medicines have become more and more issues of concern for both health authorities and the public. Although herbal medicine has been in use for hundreds to thousands years, very limited science-based data exist to explicit its chemical constituents, pharmacological activities and toxicity.
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • Isoflavonoid Biosynthesis 21321.Pdf
    Isoflavonoid Biosynthesis https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map00943&keyword=flavonoids Isoflavonoids are biologically active compounds, such as phytoestrogens, produced by pea family plants. While flavonoids (in the narrow sense) have the 2- phenylchromen-4-one backbone, isoflavonoids have the 3-phenylchromen-4-one backbone with no hydroxyl group substitution at position 2. Isoflavonoids are derived from the flavonoid biosynthesis pathway via liquiritigenin or naringenin. (Flavonoid Biosynthesis) -> [1,2] 1) Liquiritigenin -> [1,2,3] 1) flavone synthesis I & II -> 7,4’Dihydroxyflavone OR 2) flavonoid 6-hydroxylase -> 6,7,4’-Trihydroxyflavanone -> 2- hydroxyisoflavone synthase -> 2,6,7,4’-tetrahydroxyisoflavanone -> 6- Hydroxydaidzein -> Glycitein -> isoflavone 7-O-glucosyltransferase -> Glycitein 7-O-glucoside -> isoflavone 7-O-glucoside-6’’-O-malonyltransferase -> Glycitein 7-O-glucoside-6”-O-malonate OR 3) 2-hydroxyisoflavanone synthase -> 2,7,4’Trihydroxyisoflavanone -> [1,2] 1) Feedback Loop 2,7,4’-trihydroxyisoflavanone 4’-O-methyltransferase / isoflavone 4’-O-methyltransferase -> 2,7-Dihydroxy-4’-methoxyisoflavanone -> 2- hydroxyisoflavanone dehydratase -> Formononetin OR 2) 2-hydroxyisoflavone dehydratase -> Daidzein -> [1,2,3,4,5] 1) isoflavone/4’-methoxyisoflavone 2’-hydroxylase -> 2’Hydroxydaidzein -> 2’Hydroxydaidzein reductase -> 2’-Hydroxydihydrodaidzein -> 3,9-Dihydroxypterocarpan -> 3,9-dihydroxypterocarpan 6a-monooxygenase -> 3,6,9- Trihydroxypterocarpan -> [1,2] 1) trihydroxypterocarpan dimethylallyltransferase
    [Show full text]
  • PDF-Document
    Supplementary Materials 1 Metabolomics profiling analysis of red clover Table S1. Compound identification of red clover in positive and negative ion modes. MS1 No RT Ion Ion Measur Predicte Ste Le Flow Err MS2 MS3 Identification . min Form Formula ed d m af er ppm m/z m/z [M − 195.050 1 1.43 C6H11O7 195.0499 2.82 Gluconic acid ++ ++ +++ H]- 5 179.03506(C9H7O4); Benzoylcitronensa [M − 295.045 295.0448 ++ 2 4.46 C13H11O8 0.67 133.01451(C4H5O5); [295-179]135.04524(C8H7O2); ure ++ +++ H]- 0 4 + 115.00400(C4H3O4); [M + 355.102 ++ 3 5.42 C16H19O9 355.1024 1.21 chlorogenic acid + +++ H]+ 8 + [433-271]253.04956(C15H9O4); 243.06529(C14H11O4); [M + 433.111 Genistein- ++ 4 6.60 C21H21O10 433.1129 −3.54 271.06067(C15H11O5); 215.07042(C13H11O3); +++ +++ H]+ 4 glucoside + 153.01839(C7H5O4); 149.02335(C8H5O3); [M + 417.117 5 6.71 C21H21O9 417.1180 −2.34 239.07021(C15H11O3) daidzin + ++ +++ H]+ 0 [M + 447.127 calycosin-7-O-β-D- ++ 6 7.20 C22H23O10 447.1286 −1.91 269.08072(C16H13O4) +++ +++ H]+ 7 glucoside + 1 [533-285]270.05258(C15H10O5); Calycosin-7-O-β- [M + 533.127 253.04982(C15H9O4); ++ 7 8.03 C25H25O13 533.1290 −3.54 285.07642(C16H13O5); D-glucoside 4′′-O- +++ +++ H]+ 1 225.05478(C14H9O3); + malonate 137.02333(C7H5O3); [M + 433.112 ++ 8 8.95 C21H21O10 433.1129 −2.11 255.06516(C15H11O4) genistin ++ +++ H]+ 0 + [519-271]253.04958(C15H9O4,); Genistein- 243.06526(C14H11O4); [M + 519.111 433.11377(C21H21O10); glucoside ++ 9 9.31 C24H23O13 519.1133 −3.25 215.07045(C13H11O3); - +++ H]+ 6 271.06073(C15H11O5); malonate + 153.01833(C7H5O4); 149.02333(C8H5O3);
    [Show full text]
  • Oral Care Compositions Containing Free-B-Ring Flavonoids and Flavans
    (19) & (11) EP 2 308 565 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 13.04.2011 Bulletin 2011/15 A61Q 11/02 (2006.01) A61Q 11/00 (2006.01) A61K 8/19 (2006.01) A61K 8/21 (2006.01) (2006.01) (2006.01) (21) Application number: 11151708.2 A61K 8/25 A61K 8/27 A61K 8/29 (2006.01) A61K 8/49 (2006.01) (2006.01) (2006.01) (22) Date of filing: 21.12.2005 A61K 8/81 A61P 29/00 (84) Designated Contracting States: • Viscio, David AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Monmouth Junction, NJ 08852 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Gaffar, Abdul SK TR Princeton, NJ 08540 (US) • Mello, Sarita V. (30) Priority: 22.12.2004 US 639331 P Somerset, NJ 08873 (US) 12.12.2005 US 301098 • Arvanitidou, Evangelia S. Princeton, NJ 08540 (US) (62) Document number(s) of the earlier application(s) in • Prencipe, Michael accordance with Art. 76 EPC: West Windsor, NJ 08550 (US) 05855133.4 / 1 827 608 (74) Representative: Jenkins, Peter David (71) Applicant: Colgate-Palmolive Company Page White & Farrer New York NY 10022-7499 (US) Bedford House John Street (72) Inventors: London WC1N 2BF (GB) • Xu, Guofeng Princeton, NJ 08542 (US) Remarks: • Boyd, Thomas, J. This application was filed on 21-01-2011 as a Metuchen, NJ 08840 (US) divisional application to the application mentioned • Hao, Zhigang under INID code 62. North Brunswick, NJ 08902 (US) (54) ORAL CARE COMPOSITIONS CONTAINING FREE-B-RING FLAVONOIDS AND FLAVANS (57) Oral care compositions containing: a free-B-ring flavonoid and a flavan; as well as at least one bioavailability- enhancing agent are provided.
    [Show full text]