Subject Index

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index Subject Index Absolute configuration 28, 30, 267 A-Ring protons (NMR), C-6 and C-8 261-265 Acacetin 43, 48, 55, 57 -- -,C-5 264 -, UV spectra of 90 Artemetin 43, 56, 60, 277 Acacetin 7-0-glucoside 43,55, 58 -, NMR spectrum of 308 - -, UV spectra of 91 -, UV spectra of 155 Acetylated aglycone 31,45,271 Astilbin 40, 170, 172, 174, 278 Acetylation of TMS ethers 255, 259 -, NMRspectrum of 327 7-Acetyloxy-6-carbomethoxyisoflavone 277 -, UV spectra of 255 -, NMR spectrum of 312 Aurone 40 Acid hydrolysis 24 Aurones, NMR spectra index 274 Afrormosin 14, 166, 169, 173,278 -, -- interpretation 254--272 -, NMR spectrum of 320 -, numbering system 13, 227 -, structure of 20 -, paper chromatography 13 -, UV spectra of 195 -, thin-layer chromatography 22 Aglycone, degradation 28 -, UV spectra index 230 -, identification 27 -, UV spectra interpretation 227,230 -, methylation and acetylation 31,45 - (see also UV and NMR) Baicalein (5,6,7-trihydroxyflavone) 43,45,57 Aluminum chloride for UV spectroscopy 35 - -, UV spectra of 77 --- -, chalcones and aurones 229 Baicalin (5,6,7-trihydroxyflavone 7-0-glucuronide) --- -,5-deoxy-7-hydroxyflavones 53 43, 55, 57 --- -, flavones and flavonols 50-56 -- -, UV spectra of 78 --- -, isoflavones, flavanones, and Baker-Venkataraman transformation 28 dihydroflavonols 171 Bands land II 41 Amentoflavone 43,46,49,55,58,279 -- -, chalcones and aurones 227 -, NMR spectrum of 343 -- -, flavones and flavonols 42 -, UV spectra of 110 -- -, isoflavones, flavanones and Ammonia, paper chromatographie spot detection dihydroflavonols 166 12,13,21 Baptigenin 169, 173 Amurensin 40 -, UV spectra of 199 p-Anisidine hydrochloride, spray reagent 27 Baptisia australis 20 Anthochlor pigments 227 - lecontei flavonoids 4,7-10,16-18,30 Anthocyanase 25 Bathochromic shifts (see UV and Detection) Anthocyanins 52 Bayin (see 5-Deoxyvitexin) Apigenin 6, 10, 43, 46, 48, 53, 55, 57, 275 4-Benzyloxy-2,5-dihydroxy- -, NMR spectrum of 280 3,6-dimethoxyacetophenone 28 -, structure of 8 4-Benzyloxy-3,6-dimethoxy- -, UV spectra of 81 2,5-di(5-benzyloxy-3,4-dimethoxy benzoyloxy) - 7-0-glucoside 12, 43, 46, 55, 57, 275 acetophenone 29 - -, NMR spectrum of 282 Biochanin A 14,169,171,173,277 - -, structure of 8 -, NMR spectrum of 314 - -, UV spectra of 82 -, structure of 21 - 7-0-neohesperidoside 43,46, 55, 57, 275 -, UV spectra of 190 - -, NMR spectrum of 281 Boric acid for UV spectroscopy 35 - -, NMR spectrum of sugar 270 B-Ring oxygenation, effect on UV spectrum - -, structure of 269 44,166,227 - -, UV spectra of 83 B-Ring protons (NMR), C-2' and C-6' 265-267 - 7-0-neohesperidoside acetate 275 -- -, C-3' and C-5' 265-267 -- -, NMR spectrum of 281 - 7-0-rhamnoglucoside 4 Calycosin (3', 7-dihydroxy-4' -methoxyisoflavone) - -, structure of 8 6, 14 Arabinose identification 32 - -, structure of 9 A-Ring oxygenation, effect on UV spectra - 7-0-glucoside 7 44,45,46 - -, structure of 9 346 Subject Index Calycosin 7-0-rhamnoglucoside 7 C-Glycosides, NMR 267,269,271 - -, structure of 9 -, paper chromatography 11, 12 Carbon tetrachloride (NMR) 255, 267 Circular dichroism 28, 30 2-Carboxy-5,7-dihydroxyisoflavone 169, 171, 173 C-Methyl protons (NMR) 272 -, UV spectra of 178 Column chromatography 2-Carbethoxy-5, 7-dihydroxy-4'-methoxy- - -, aglycones 19 6-methylisoflavone 278 - -,general 17 -, NMR spectrum of(CCI4) 318 Complexes - AICl3/flavones and flavonols -, NMR spectrum of(CDCI3) 319 51 2-Carbethoxy-5,7 -dihydroxy-4' -methoxy- Cotton efTect 30 8-methylisoflavone 277 Coumarins 18 -, NMR spectrum of (CCI4) 317 Coupling constants (see proton of interest under -, NMR spectrum of(CDCI3) 318 chemical shift) 2-Carboxy-6,7-dihydroxy-4'-methoxyisoflavone C-Ring protons (NMR) 267 169, 173 -- -, IX- and ß-protons (chalcones) 267 -, UV spectra of 194 -- -, benzylic protons (aurones) 267 8-Carbomethoxy-5-hydroxy-6-methylisoflavone -- -, C-2, C-3 262, 267 277 Cytisoside 263,275 -, NMR spectrum of(CDCI3) 310 -, NMR spectrum of 284 -, NMR spectrum of (DMSO-d6) 311 C. A. T. (see time-averaging computer) Daidzein 6, 9, 166, 169, 173 Celite 17, 18 -, structure of 21 Cellulose, column chromatography 17 -, UV spectra of 179 -, thin-Iayer chromatography 21, 22 - 7-0-glucoside (Daidzin) 7, 173 Centaurein 42, 56, 59, 277 -- -, structure of 9 -, NMR spectrum of 307 -- -, UV spectra of 180 -, UV spectra of 150 - 7-0-rhamnoglucoside 7 Chalcones, NMR spectra index 274 - -, structure of 9 -, -- interpretation 254-272 Degradation technique 28 -, numbering system 13, 227 Demethoxysudachitin 21,275 -, paper chromatography 13 -, NMR spectrum of 290 -, thin-Iayer chromatography 22 -, structure of 19 -, UV spectra index 230 Demethylation, selective 29 -, -- interpretation 227-230 5-Deoxy-flavonoids, NMR spectra 264-265 Chalcone 40 -, relative Rfvalues 10 - IX,ß-epoxide 279 -, UV spectra 44,53,56,166,169 - -, NMR spectrum of 339 5-Deoxyvitexin (Bayin) 43, 46, 48, 53, 57 Charcoal 16 - -, UV spectra of 72 Chelation 50 Desalting 32 Chemical shifts, IX and ß-protons (chalcones) 267 Detection (UV) of, 3,4'-dihydroxyl system 47, - -, acetylated C-glycosides 271 167 - -, benzylic protons (aurones) 267 -- 6,7-dioxygenated isoflavones 166 - -, C-methyl protons 272 -- ortho-dihydroxyl groups 50,52,169-171, - -, C-2 protons 267 228 - -, C-2' and C-6' protons 265-267 -- 3,3',4'-trihydroxyl system 47,50 - -, C-3 protons 262, 267 -- 5,6,7; 5,7,8; and 3',4',5'-trihydroxyl systems - -, C-3' and C-5' protons 265-267 47,50,168-170,228,229 - -, C-5 protons 264 -- offree hydroxyl groups, 3-hydroxyl 45, - -, C-6 and C-8 protons 261-265 48,52-55 - -, downfield on acetylation 31,45 ---- -, 4-hydroxyl 228 - -, hydroxyl protons 254 ---- -,5-hydroxyl 52-55,169-172 - -, methoxyl and acetoxyl protons 271 ---- -,6-hydroxyl 51,52,169,170, - -, solvent induced 267, 272 228 - -, sugar protons 268 ---- -,7-hydroxyl 48,51,169 - -,table of 260 ---- -, 8-hydroxyl 51, 52, 169 - -, TMS ether protons 272 ---- -, 2'-hydI:oxyl 229 Chlorophyll, removal 19 ---- -,3'-hydroxyl 50,169 Chromatography cabinet 4, 5 ---- -,4'-hydroxyl 45,48-50,169, Chrysin 43, 48, 55, 57 228 -, UV spectra of 68 Determination of Rfvalues 9 Chrysoeriol 43, 46, 49, 55, 58 De-trimethylsilylation 258, 259 -, UV spectra of 101 Deuteriochloroform solvent (NMR) 254, 267 C-Glycosides, identification of sugar 31' Deuteriodimethyl sulfoxide solvent (NMR) - in Lemna minor 12 254-267 - isomerization 11, 24 Diaxial protons 267,268 Subject Index 347 Diazomethane 30, 259 4',7-Dihydroxyflavone 7-0-rhamnoglucoside, 5',7-Dibenzyloxy-3',4',5,6,8-pentamethoxyflavone -, structure of 8 28,29 -, UV spectra of 71 5' -7-Dibenzyloxy-6-(5-benzyloxy- 2',4' -Dihydroxy-3,4-dimethoxychalcone 279 3,4-dimethoxybenzoyloxy)-3',4',5,8-tetra­ -, NMR spectrum of 337 methoxyflavone 29 5,7 -Dihydroxy-3',4' -dimethoxyflavanone 278 Diequatorial protons· 269 -, NMR spectrum of 334 4',7-Di-O-ethylvitexin 40 5,7-Dihydroxy-3',4'-dimethoxyflavone 43,49, Diglycosides, column chromatography 17, 20 55,58,275 -, distinction from tri- and mono- 27 -, NMR spectrum of 287 -, hydrolysis 24 -, UV spectra of 104 -, NMR 269, 271 5,7-Dihydroxyisoflavone 166, 169, 171, 173 -, paper chromatography 7, 10, 11 -, UV spectra of 176 -, thin-Iayer chromatography 20-22 2' ,4-Dihydroxy-4' -methoxychalcone 279 Dihydrofisetin 170, 174, 278 -, NMR spectrum of 335 -, NMR spectrum of 326 5,7-Dihydroxy-2'-methoxyflavone 43,48,55, -, UV spectra of 220 58,275 Dihydroflavonols, absolute configuration 28, -, NMR spectrum of 284 30 -, UV spectra of 92 -, column chromatography 17-20 3', 7-Dihydroxy-4' -methoxyisoflavone -, 3-0-glucosides 30 (see Calycosin) -, NMR spectra index 274 5,7-Dihydroxy-4' -methoxyisoflavone -, -- interpretation 254-272 (see Biochanin A) -, paper chromatography 13 6,7 -Dihydroxy-4' -methoxyisoflavone -, thin-Iayer chromatography 20-22 (see T exasin) -, UV spectra index 173 4',7-Dihydroxy-5-methoxyisoflavone 40 -, -- interpretation 165-173 5,7 -Dihydroxy-4' -methoxy-8-methylisofla vone Dihydrokaempferol 40, 172, 174, 278 277 -, NMR spectrum of 325 -, NMR spectrum of 316 -, UV spectra of 222 5,7-Dihydroxy-3' ,4' ,5' -trimethoxyfla vone 43, Dihydroquercetin 278 49, 55, 58 -, NMR spectrum of 327 -, UV spectra of 106 Dihydrorobinetin 170, 174, 278 3',5-Dihydroxy-3,4',7,8-tetramethoxyflavone 258 -, NMR spectrum 328 4,4'-Dimethoxychalcone 279 -, UV spectra of 226 -, NMR spectrum of 335 3',4'-Dihydroxyaurone 40,229,230 3',4'-Dimethoxyflavone 43,57 -, UV spectra of 243 -, UV spectra of 67 4',7-Dihydroxyaurone 279 3,4-Di-O-methylgallic acid 28 -, NMR spectrum of 340 5,7-Dimethoxyisoflavone 173 5,7-Dihydroxyaurone 227,230 -, UV spectra of 176 -, UV spectra of 244 5,7 -Dimethoxy-8-methylisoflavone 277 6,7-Dihydroxyaurone 227,229,230 -, NMR spectrum of 313 -, UV spectra of 245 Dimethyl sulfate 30, 259 2,2'-Dihydroxychalcone 229,230 Diosmetin 40, 43, 49, 55, 58, 275 -, UV spectra of 235 -, NMR spectrum of 287 2',4-Dihydroxychalcone 229,230 -, UV spectra of 103 -, UV spectra of 236 - 7-0-rutinoside (see Diosmin) 3,4-Dihydroxychalcone 229,230 - triacetate, structure of 45 -, UV spectra of 234 Diosmin 270,271,275 (+ )-4',7-Dihydroxy-dihydroflavonol 7 -, NMR spectrum of 288 -, structure of 8 -, structure of 269 4',7-Dihydroxyflavonol 6 - acetate 275 -, structure of 8 - -, NMR spectrum of 288 5,7-Dihydroxyflavanone (see also pinocembrin) Distinguishing, 6-C- and 8-C-glycosides 11, 12, 40,45 263 2',3-Dihydroxyflavone 40 -, 6-C- and 8-C-methyl groups 272 3',4'-Dihydroxyflavone 40,43,46,50,57 -, neohesperidosides and rutinosides 269 -, UV spectra of 66 -, C-2 protons 269 4',7-Dihydroxyflavone 6,43,46,48,57 -, C-3, C-6 and C-8
Recommended publications
  • Biochanin a Promotes Proliferation That Involves a Feedback Loop of Microrna-375 and Estrogen Receptor Alpha in Breast Cancer Cells
    Cellular Physiology Cell Physiol Biochem 2015;35:639-646 DOI: 10.1159/000369725 © 2015 S. Karger AG, Basel and Biochemistry Published online: January 28, 2015 www.karger.com/cpb 639 Accepted:Chen et al.: December Biochanin 03, A Promotes 2014 Proliferation 1421-9778/15/0352-0639$39.50/0 This is an Open Access article licensed under the terms of the Creative Commons Attribution- NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. Original Paper Biochanin A Promotes Proliferation that Involves a Feedback Loop of MicroRNA-375 and Estrogen Receptor Alpha in Breast Cancer Cells Jian Chena Bo Geb Yong Wanga Yu Yec Sien Zengd Zhaoquan Huangd aSchool of Basic Medical Sciences, Guilin Medical University, Guilin, bGuilin Medical University, Guilin, cDepartment of Emergency, First Affiliated Hospital of Guangxi Medical University, Nanning, dDepartment of Pathology, Guilin Medical University, Guilin, China Key Words Biochanin A • miR-375 • Estrogen receptor α • OVX Abstract Background: Biochanin A and formononetin are O-methylated isoflavones that are isolated from the root of Astragalus membranaceus, and have antitumorigenic effects. Our previous studies found that formononetin triggered growth-inhibitory and apoptotic activities in MCF-7 breast cancer cells. We performed in vivo and in vitro studies to further investigate the potential effect of biochanin A in promoting cell proliferation in estrogen receptor (ER)- positive cells, and to elucidate underlying mechanisms. Methods: ERα-positive breast cancer cells (T47D, MCF-7) were treated with biochanin A. The MTT assay and flow cytometry were used to assess cell proliferation and apoptosis.
    [Show full text]
  • Protection of PC12 Cells Against Superoxide-Induced Damage by Isoflavonoids from Astragalus Mongholicus1
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES 22, 50-54 (2009) www.besjournal.com Protection of PC12 Cells against Superoxide-induced Damage by 1 Isoflavonoids from Astragalus mongholicus # + + #,2 DE-HONG YU , YONG-MING BAO , LI-JIA AN , AND MING YANG #The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China; +Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China Objective To further investigate the neuroprotective effects of five isoflavonoids from Astragalus mongholicus on xanthine (XA)/ xanthine oxidase (XO)-induced injury to PC12 cells. Methods PC12 cells were damaged by XA/XO. The activities of antioxidant enzymes, MTT, LDH, and GSH assays were used to evaluate the protection of these five isoflavonoids. Contents of Bcl-2 family proteins were determined with flow cytometry. Results Among the five isoflavonoids including formononetin, ononin, 9, 10-dimethoxypterocarpan-3-O-β-D-glucoside, calycosin and calycosin-7-O-glucoside, calycosin and calycosin-7-O-glucoside were found to inhibit XA/ XO-induced injury to PC12 cells. Their EC50 values of formononetin and calycosin were 0.05 μg/mL. Moreover, treatment with these three isoflavonoids prevented a decrease in the activities of antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while formononetin and calycosin could prevent a significant deletion of GSH. In addition, only calycosin and calycosin-7-O-glucoside were shown to inhibit XO activity in cell-free system, with an approximate IC50 value of 10 μg/mL and 50 μg/mL. Formononetin and calycosin had no significant influence on Bcl-2 or Bax protein contents. Conclusion Neuroprotection of formononetin, calycosin and calycosin-7-O-glucoside may be mediated by increasing endogenous antioxidants, rather by inhibiting XO activities or by scavenging free radicals.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
    USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al.
    [Show full text]
  • Namenverzeichnis. Index of Names. Index Des Auteurs
    Namenverzeichnis. Index of Names. Index des Auteurs. ABDERHALDEN, E. 398, 400. ARNOLD, ,V. 200, 201, 236, 237, 241. ABELSON, P. H. 379, 383, 389, 390, 393, ARONOFF, S. 26, 59, 258, 282. 394, 395, 400, 402. ASAHINA, Y. 13, 130, 131 , 175. ADAIR, G. S. 327, 371. ASANO, J. 131, 175· ADAMS, R. 147, 149, 175. ASHBY, ''I'. C. 267, 282. ADANK, K. 189, 237, 238, 241, 242, 245. ASHWORTH, B. DE 49, 61. ADRIAN, M. M. 138, 175. ASMIS, H. 190, 2lI, 214, 215, 228, 236, AGREN, G. 383, 400. 238, 241. AHLUWALIA, V. K. 13, 21, 40, 59. Aso, K. 175. AHMED, M. 173, 178. ASTON, B. C. 161, 177. AHRENS, G. 84, 118. AusKAPS, J. 434, 446. AKABORI, S. 360, 371. AVERY, G. S., Jr. 258, 270, 273, 275, ALADASHVILI, V. A. 127, 175. 276, 282, 283. ALDAG, H. J. 434, 448. ALDER, K. 77, 8o, lI8, 154, 175. BACCARINI, P. 252, 283. ALDERWEIRELDT, F. 165. BACHLI, E. 190, 204, 207, 2I5, 225, 226, ALGAR, J. 41, 59. 228, 236, 238, 239, 241, 242, 243· ALLAN, J. 34, 59· BACHMANN, E. 312, 313, 3 18. ALLEN, D. W. 332, 338, 340, 344, 345, BADER, F. E. 191, 202, 239, 241. 347, 348, 349, 350, 35 1, 352, 368 371, BAHR, K. 18 5, 187, 189, 207, 2II, 2I5, 372. 218, 219, 220, 236, 237, 238, 246. ALLEN, F. 127, 175. 'BAKER, J. W. 281, 283. ALLEN, P. W. 420, 425, 445. II BAKER, W. 3, 16, 35, 41, 43, 44, 56, 59· ALLISON, A. C. 334, 356, 372.
    [Show full text]
  • Light and Temperature Conditions Affect Bioflavonoid Accumulation In
    Plant Cell Tiss Organ Cult DOI 10.1007/s11240-014-0502-8 RESEARCH NOTE Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush) Adam Kokotkiewicz • Adam Bucinski • Maria Luczkiewicz Received: 20 March 2014 / Accepted: 26 April 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Callus cultures of the endemic South-African maintained at 24 °C. On the contrary, elevated temperature legume Cyclopia subternata were cultivated under varying (29 °C) applied during the second half of the culture period light and temperature conditions to determine their influ- resulted in over 300 and 500 % increase in CG and PG ence on biomass growth and bioflavonoids accumulation. content (61.76 and 58.89 mg 100 g-1, respectively) while Experimental modifications of light included complete maintaining relatively high biomass yield. darkness, light of different spectral quality (white, red, blue and yellow) and ultraviolet C (UVC) irradiation. The calli Keywords Hesperidin Á In vitro cultures Á Isoflavones Á were also subjected to elevated temperature or cold stress. Light spectral quality Á Temperature regime Á UVC Among the tested light regimes, cultivation under blue irradiation light resulted in the highest levels of hesperidin (H)— 118.00 mg 100 g-1 dry weight (DW) on 28 days of Abbreviations experiment, as well as isoflavones: 7-O-b-glucosides of CG Calycosin 7-O-b-glucoside calycosin (CG), pseudobaptigenin (PG) and formononetin 4-CPPU N-(2-chloro-4-pyridyl)-N0-phenylurea (FG)—28.74, 19.26 and 10.32 mg 100 g-1 DW, respec- (forchlorfenuron) tively, in 14-days old calli.
    [Show full text]
  • Effects of Enzymatic and Thermal Processing on Flavones, the Effects of Flavones on Inflammatory Mediators in Vitro, and the Absorption of Flavones in Vivo
    Effects of enzymatic and thermal processing on flavones, the effects of flavones on inflammatory mediators in vitro, and the absorption of flavones in vivo DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gregory Louis Hostetler Graduate Program in Food Science and Technology The Ohio State University 2011 Dissertation Committee: Steven Schwartz, Advisor Andrea Doseff Erich Grotewold Sheryl Barringer Copyrighted by Gregory Louis Hostetler 2011 Abstract Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. Two studies were conducted to determine the effects of processing on stability and profiles of flavones in celery and parsley, and a third explored the effects of deglycosylation on the anti-inflammatory activity of flavones in vitro and their absorption in vivo. In the first processing study, celery leaves were combined with β-glucosidase-rich food ingredients (almond, flax seed, or chickpea flour) to determine test for enzymatic hydrolysis of flavone apiosylglucosides. Although all of the enzyme-rich ingredients could convert apigenin glucoside to aglycone, none had an effect on apigenin apiosylglucoside. Thermal stability of flavones from celery was also tested by isolating them and heating at 100 °C for up to 5 hours in pH 3, 5, or 7 buffer. Apigenin glucoside was most stable of the flavones tested, with minimal degradation regardless of pH or heating time.
    [Show full text]
  • Mechanisms of Toxic Action of the Flavonoid Quercetin and Its Phase II Metabolites
    Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Promotor: Prof. Dr. Ir. I.M.C.M. Rietjens Hoogleraar in de Toxicologie Wageningen Universiteit Co-promotor: Dr. G.M. Alink Universitair Hoofddocent, Sectie Toxicologie Wageningen Universiteit. Promotiecommissie: Prof. Dr. A. Bast Universiteit Maastricht Dr. Ir. P.C.H. Hollman RIKILT Instituut voor Voedselveiligheid, Wageningen Prof. Dr. Ir. F.J. Kok Wageningen Universiteit Prof. Dr. T. Walle Medical University of South Carolina, Charleston, SC, USA Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 7 april 2006 des namiddags te half twee in de Aula Title Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Author Hester van der Woude Thesis Wageningen University, Wageningen, the Netherlands (2006) with abstract, with references, with summary in Dutch. ISBN 90-8504-349-2 Abstract During and after absorption in the intestine, quercetin is extensively metabolised by the phase II biotransformation system. Because the biological activity of flavonoids is dependent on the number and position of free hydroxyl groups, a first objective of this thesis was to investigate the consequences of phase II metabolism of quercetin for its biological activity. For this purpose, a set of analysis methods comprising HPLC-DAD, LC-MS and 1H NMR proved to be a useful tool in the identification of the phase II metabolite pattern of quercetin in various biological systems.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Isolation, Identification and Characterization of Allelochemicals/Natural Products
    Isolation, Identification and Characterization of Allelochemicals/Natural Products Isolation, Identification and Characterization of Allelochemicals/Natural Products Editors DIEGO A. SAMPIETRO Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina CESAR A. N. CATALAN Instituto de Química Orgánica Universidad Nacional de Tucumán, Tucumán Argentina MARTA A. VATTUONE Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina Series Editor S. S. NARWAL Haryana Agricultural University Hisar, India Science Publishers Enfield (NH) Jersey Plymouth Science Publishers www.scipub.net 234 May Street Post Office Box 699 Enfield, New Hampshire 03748 United States of America General enquiries : [email protected] Editorial enquiries : [email protected] Sales enquiries : [email protected] Published by Science Publishers, Enfield, NH, USA An imprint of Edenbridge Ltd., British Channel Islands Printed in India © 2009 reserved ISBN: 978-1-57808-577-4 Library of Congress Cataloging-in-Publication Data Isolation, identification and characterization of allelo- chemicals/natural products/editors, Diego A. Sampietro, Cesar A. N. Catalan, Marta A. Vattuone. p. cm. Includes bibliographical references and index. ISBN 978-1-57808-577-4 (hardcover) 1. Allelochemicals. 2. Natural products. I. Sampietro, Diego A. II. Catalan, Cesar A. N. III. Vattuone, Marta A. QK898.A43I86 2009 571.9’2--dc22 2008048397 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher, in writing. The exception to this is when a reasonable part of the text is quoted for purpose of book review, abstracting etc.
    [Show full text]
  • An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
    AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support.
    [Show full text]
  • Research Article Simultaneous Extraction Optimization And
    Hindawi Publishing Corporation ISRN Biotechnology Volume 2013, Article ID 450948, 10 pages http://dx.doi.org/10.5402/2013/450948 Research Article Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry Thiyagarajan Sathishkumar,1 Ramakrishnan Baskar,1 Mohan Aravind,1 Suryanarayanan Tilak,1 Sri Deepthi,1 and Vellalore Maruthachalam Bharathikumar2 1 Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India 2 Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5 Correspondence should be addressed to iyagarajan Sathishkumar; [email protected] Received 24 June 2012; Accepted 9 August 2012 Academic Editors: Y. H. Cheong, H. Kakeshita, W. A. Kues, and D. Pant Copyright © 2013 iyagarajan Sathishkumar et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake �ask methods provide low yield of �avonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the �avonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. e shake �ask method of �avonoid extraction was observed to provide a yield of (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of �avonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue).
    [Show full text]
  • Relation Structure/Activité De Tanins Bioactifs Contre Les Nématodes
    En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Pathologie, Toxicologie, Génétique et Nutrition Présentée et soutenue par : Mme JESSICA QUIJADA PINANGO le jeudi 17 décembre 2015 Titre : RELATION STRUCTURE/ACTIVITE DE TANINS BIOACTIFS CONTRE LES NEMATODES GASTROINTESTINAUX (HAEMONCHUS CONTORTUS) PARASITES DES PETITS RUMINANTS Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : Interactions Hôtes - Agents Pathogènes (IHAP) Directeur(s) de Thèse : M. HERVÉ HOSTE Rapporteurs : M. ADIBE LUIZ ABDALLA, UNIVERSIDAD DE SAO PAULO Mme HEIDI ENEMARK, NORWEGIAN VETERINARY INSTITUTE Membre(s) du jury : 1 M. FRANÇOIS SCHELCHER, ECOLE NATIONALE VETERINAIRE DE TOULOUSE, Président 2 M. HERVÉ HOSTE, INRA TOULOUSE, Membre 2 Mme CARINE MARIE-MAGDELAINE, INRA PETIT BOURG, Membre 2 M. SMARO SOTIRAKI, HAO-DEMETER, Membre 2 M. VINCENT NIDERKORN, INRA CLERMONT FERRAND, Membre QUIJADA J. 2015 Cette thèse est dédiée à mes parents, Teresa et Héctor, À mon mari, Rafäel, pour son soutien inconditionnel, son amour illimité, sa patience, sa loyauté, son amitié et surtout sa confidence, À ma grand-mère, Marcolina, car m'ait donné le plus grand et précieux cadeau en ma vie : ma foi en Dieu ma forteresse et mon espoir (Isaïas 41:13). À mes adorés sœurs, belle- sœurs et frère : Yurlin, Indira, Iskay, Olga, Zoraida et Jesus. Merci pour l’amour infini que m’ont toujours été donné, celui qu’a été prolongé par l'amour de mes merveilleux neveux. 1 QUIJADA J. 2015 REMERCIEMENTS Je remercie tout d’abord mon Dieu pour me donner le cadeau de la vie, et la forteresse pour vivre chaque jour.
    [Show full text]