UNITED STATES PATENT OFFICE 2,681,907 ISOATION of FILAWONOD COMPOUNDS Simon H
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Metabolomics Reveals the Molecular Mechanisms of Copper Induced
Article Cite This: Environ. Sci. Technol. 2018, 52, 7092−7100 pubs.acs.org/est Metabolomics Reveals the Molecular Mechanisms of Copper Induced Cucumber Leaf (Cucumis sativus) Senescence † ‡ § ∥ ∥ ∥ Lijuan Zhao, Yuxiong Huang, , Kelly Paglia, Arpana Vaniya, Benjamin Wancewicz, ‡ § and Arturo A. Keller*, , † Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China ‡ Bren School of Environmental Science & Management, University of California, Santa Barbara, California 93106-5131, United States § University of California, Center for Environmental Implications of Nanotechnology, Santa Barbara, California 93106, United States ∥ UC Davis Genome Center-Metabolomics, University of California Davis, 451 Health Sciences Drive, Davis, California 95616, United States *S Supporting Information ABSTRACT: Excess copper may disturb plant photosynthesis and induce leaf senescence. The underlying toxicity mechanism is not well understood. Here, 3-week-old cucumber plants were foliar exposed to different copper concentrations (10, 100, and 500 mg/L) for a final dose of 0.21, 2.1, and 10 mg/plant, using CuSO4 as the Cu ion source for 7 days, three times per day. Metabolomics quantified 149 primary and 79 secondary metabolites. A number of intermediates of the tricarboxylic acid (TCA) cycle were significantly down-regulated 1.4−2.4 fold, indicating a perturbed carbohy- drate metabolism. Ascorbate and aldarate metabolism and shikimate- phenylpropanoid biosynthesis (antioxidant and defense related pathways) were perturbed by excess copper. These metabolic responses occur even at the lowest copper dose considered although no phenotype changes were observed at this dose. High copper dose resulted in a 2-fold increase in phytol, a degradation product of chlorophyll. -
(12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al. -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Rosemary)-Derived Ingredients As Used in Cosmetics
Safety Assessment of Rosmarinus Officinalis (Rosemary)-Derived Ingredients as Used in Cosmetics Status: Tentative Amended Report for Public Comment Release Date: March 28, 2014 Panel Meeting Date: June 9-10, 2014 All interested persons are provided 60 days from the above release date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. Lillian J. Gill. The 2014 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This safety assessment was prepared by Monice M. Fiume, Assistant Director/Senior Scientific Analyst. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200♢ Washington, DC 20036 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] TABLE OF CONTENTS Abstract ...................................................................................................................................................................................................................................... -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
An in Silico Study of the Ligand Binding to Human Cytochrome P450 2D6
AN IN SILICO STUDY OF THE LIGAND BINDING TO HUMAN CYTOCHROME P450 2D6 Sui-Lin Mo (Doctor of Philosophy) Discipline of Chinese Medicine School of Health Sciences RMIT University, Victoria, Australia January 2011 i Declaration I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at RMIT university or any other educational institution, except where due acknowledgment is made in the thesis. Any contribution made to the research by others, with whom I have worked at RMIT university or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project‘s design and conception or in style, presentation and linguistic expression is acknowledged. PhD Candidate: Sui-Lin Mo Date: January 2011 ii Acknowledgements I would like to take this opportunity to express my gratitude to my supervisor, Professor Shu-Feng Zhou, for his excellent supervision. I thank him for his kindness, encouragement, patience, enthusiasm, ideas, and comments and for the opportunity that he has given me. I thank my co-supervisor, A/Prof. Chun-Guang Li, for his valuable support, suggestions, comments, which have contributed towards the success of this thesis. I express my great respect to Prof. Min Huang, Dean of School of Pharmaceutical Sciences at Sun Yat-sen University in P.R.China, for his valuable support. -
Studies of the Effects of Flavonoids on Roentgen Irradiation Disease
STUDIES OF THE EFFECTS OF FLAVONOIDS ON ROENTGEN IRRADIATION DISEASE. II. COMPARISON OF THE PROTECTIVE INFLUENCE OF SOME FLAVONOIDS AND VITAMIN C IN DOGS John B. Field, Paul E. Rekers J Clin Invest. 1949;28(4):746-751. https://doi.org/10.1172/JCI102127. Research Article Find the latest version: https://jci.me/102127/pdf STUDIES OF THE EFFECTS OF FLAVONOIDS ON ROENTGEN IRRADIATION DISEASE. II. COMPARISON OF THE PROTECTIVE INFLUENCE OF SOME FLAVONOIDS AND VITAMIN C IN DOGS' By JOHN B. FIELD 2 AND PAUL E. REKERS (From the Department of Radiation Biology, University of Rochester, School of Medicine and Dentistry, Rochester, New York) (Received for publication February 22, 1949) The nature of dietary factors contributing to Thus, it has been proposed that rutin either de- the maintenance of vascular integrity has not, creases the rate of vascular disintegration, or in- as yet, been satisfactorily elucidated. However, creases its repair (12). vitamin C appears to play a specific role (1-3) by The purpose of this report is to summarize functioning in some manner to incorporate the vas- briefly observations on the activity of other sub- cular cement substance. The significance of other stances of the flavonoid and related groups and agents in alleviating "vascular purpura" has re- to indicate the relationship of these substances mained inconclusive. with vitamin C in the irradiated dog. It has been claimed that "vascular permeability" is dependent upon regulation by the entire class of METHODS "vitamin P" substances. Since 1936, the experi- Dogs of the beagle strain, identical to those utilized in mental device of eliminating "vitamin P" from the the previous study (12) were used throughout. -
The Role of Selected Flavonols in Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor–1 (TRAIL-R1) Expression on Activated RAW 264.7 Macrophages
Molecules 2015, 20, 900-912; doi:10.3390/molecules20010900 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article The Role of Selected Flavonols in Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor–1 (TRAIL-R1) Expression on Activated RAW 264.7 Macrophages Monika Warat 1, Tadeusz Sadowski 2, Ewelina Szliszka 1, Wojciech Król 1 and Zenon P. Czuba 1,* 1 School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Chair and Department of Microbiology and Immunology, Jordana 19, 41-808 Zabrze, Poland; E-Mails: [email protected] (M.W.); [email protected] (E.S.); [email protected] (W.K.) 2 School of Public Health in Bytom, Medical University of Silesia in Katowice, Toxicology and Drug Addiction Division, Communal Department of Hygiene and Sanitary Supervision, Medyków 18, 40-752 Katowice, Poland; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +48-32-272-25-54. Academic Editor: Marcello Iriti Received: 24 November 2014 / Accepted: 5 January 2015 / Published: 8 January 2015 Abstract: Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptors (TRAIL-R) are an important factor of apoptosis in cancer cells. There are no data about the effect of flavonols on the receptor expression on a surface of macrophage like cells. In this study, the expression level of TRAIL-R1 on murine RAW264.7 macrophages in the presence of selected flavonols: galangin, kaempferol, kaempferide and quercetin, which differ from their phenyl ring substituents, were studied. The expression of TRAIL-R1 death receptors on non-stimulated and lipopolysaccharide (LPS)-stimulated macrophages was determined using flow cytometry. -
Phytochem Referenzsubstanzen
High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039. -
On the Natural Diversity of Phenylacylated-Flavonoid and Their
Phytochem Rev DOI 10.1007/s11101-017-9531-3 On the natural diversity of phenylacylated-flavonoid and their in planta function under conditions of stress Takayuki Tohge . Leonardo Perez de Souza . Alisdair R. Fernie Received: 23 November 2016 / Accepted: 26 August 2017 © The Author(s) 2017. This article is an open access publication Abstract Plants contain light signaling systems and Keywords Flavonoid · Natural diversity · undergo metabolic perturbation and reprogramming Phenelyacylation · Species conservation · under light stress in order to adapt to environmental UV-B changes. Flavonoids are one of the largest classes of natural phytochemical compounds having several Abbreviations biological functions conferring stress defense to ANS Anthocyanidin synthase plants and health benefits in animal diets. A recent BAHD BEAT/AHCT/HCBT/DAT study of phenylacylated-flavonoids (also called BGLU Beta glucosidase hydroxycinnamoylated-flavonoids) of natural acces- CHI Chalcone isomerase sions of Arabidopsis suggested that phenylacylation CHS Naringenin-chalcone synthase of flavonoids relates to selection under different COP1 CONSTITUTIVE natural light conditions. Phenylacylated-flavonoids PHOTOMORPHOGENIC 1 which are decorated with hydroxycinnamoyl units, CPD Cyclobutane pyrimidine dimers namely cinnamoyl, 4-coumaroyl, caffeoyl, feruloyl CRY CRYPTOCHROME and sinapoyl moieties, are widely distributed in the CUL4 CULLIN 4 plant kingdom. Currently, more than 400 phenylacy- DDB UV-damaged DNA binding protein lated flavonoids have been reported. Phenylacylation -
European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations
(19) TZZ _¥_T (11) EP 2 791 366 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12R 1/01 (2006.01) A01H 3/00 (2006.01) 26.04.2017 Bulletin 2017/17 (86) International application number: (21) Application number: 12805902.9 PCT/US2012/070036 (22) Date of filing: 17.12.2012 (87) International publication number: WO 2013/090884 (20.06.2013 Gazette 2013/25) (54) BRADYRHIZOBIUM STRAINS BRADYRHIZOBIUM STÄMME SOUCHES DE BRADYRHIZOBIUM (84) Designated Contracting States: • SUGAWARA MASAYUKI ET AL: "Functional Role AL AT BE BG CH CY CZ DE DK EE ES FI FR GB of Bradyrhizobium japonicum Trehalose GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Biosynthesis and Metabolism Genes during PL PT RO RS SE SI SK SM TR Physiological Stress and Nodulation", APPLIED ANDENVIRONMENTAL MICROBIOLOGY, vol. 76, (30) Priority: 16.12.2011 US 201161576470 P no. 4, February 2010 (2010-02), pages 1071-1081, XP002694519, (43) Date of publication of application: • STREETER J G: "Effect of trehalose on survival 22.10.2014 Bulletin 2014/43 of Bradyrhizobium japonicum during desiccation.", JOURNAL OF APPLIED (73) Proprietors: MICROBIOLOGY 2003, vol. 95, no. 3, 2003, pages • Novozymes Bioag A/S 484-491, XP002694520, ISSN: 1364-5072 2880 Bagsvaerd (DK) • CYTRYN EDDIE J ET AL: "Transcriptional and • Novozymes Biologicals, Inc. physiological responses of Bradyrhizobium Salem, VA 24153 (US) japonicum to desiccation-induced stress.", JOURNAL OF BACTERIOLOGY OCT 2007, vol. (72) Inventors: 189, no. 19, October 2007 (2007-10), pages • KANG, Yaowei 6751-6762, XP002694521, ISSN: 0021-9193 Christiansburg, VA 24073 (US) • MARY P ET AL: "Differences among Rhizobium • TRAN, Anh melilotiand Bradyrhizobium japonicum strains in Roanoke, VA 24019 (US) tolerance to desiccation and storage at different • SEMONES, Shawn relative humidities", SOIL BIOLOGY AND Salem, VA 24153 (US) BIOCHEMISTRY,PERGAMON, OXFORD,GB, vol.