Rosemary)-Derived Ingredients As Used in Cosmetics

Total Page:16

File Type:pdf, Size:1020Kb

Rosemary)-Derived Ingredients As Used in Cosmetics Safety Assessment of Rosmarinus Officinalis (Rosemary)-Derived Ingredients as Used in Cosmetics Status: Tentative Amended Report for Public Comment Release Date: March 28, 2014 Panel Meeting Date: June 9-10, 2014 All interested persons are provided 60 days from the above release date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. Lillian J. Gill. The 2014 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This safety assessment was prepared by Monice M. Fiume, Assistant Director/Senior Scientific Analyst. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200♢ Washington, DC 20036 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] TABLE OF CONTENTS Abstract ....................................................................................................................................................................................................................................... 1 Introduction ................................................................................................................................................................................................................................. 1 Chemistry .................................................................................................................................................................................................................................... 1 Definition ............................................................................................................................................................................................................................... 1 General Characterization ....................................................................................................................................................................................................... 1 Chemical and Physical Properties .......................................................................................................................................................................................... 1 Preparation/Extraction ........................................................................................................................................................................................................... 1 Constituents/Impurities .......................................................................................................................................................................................................... 2 Use .............................................................................................................................................................................................................................................. 3 Cosmetic ................................................................................................................................................................................................................................ 3 Non-Cosmetic ........................................................................................................................................................................................................................ 3 Toxicokinetics ............................................................................................................................................................................................................................. 4 Penetration Enhancement ....................................................................................................................................................................................................... 4 Toxicological Studies .................................................................................................................................................................................................................. 4 Single Dose (Acute) Toxicity ................................................................................................................................................................................................ 4 Repeated Dose Toxicity ......................................................................................................................................................................................................... 4 Ocular Irritation ..................................................................................................................................................................................................................... 4 Anti-Inflammatory Effects ..................................................................................................................................................................................................... 4 Effect on Epidermal Hyperplasia ........................................................................................................................................................................................... 4 Immunologic Effects.............................................................................................................................................................................................................. 5 Reproductive and Developmental Toxicity ................................................................................................................................................................................. 5 Non-Human...................................................................................................................................................................................................................... 5 Human .............................................................................................................................................................................................................................. 5 Effects on Estrogenic Activity ............................................................................................................................................................................................... 5 Non-Human...................................................................................................................................................................................................................... 5 Human .............................................................................................................................................................................................................................. 5 Genotoxicity ................................................................................................................................................................................................................................ 6 Carcinogenicity ........................................................................................................................................................................................................................... 6 Effects on Tumor Promotion .................................................................................................................................................................................................. 6 Irritation and Sensitization .......................................................................................................................................................................................................... 6 Skin Irritation/Sensitization ................................................................................................................................................................................................... 6 Phototoxicity .......................................................................................................................................................................................................................... 6 Case Reports .......................................................................................................................................................................................................................... 7 Summary ..................................................................................................................................................................................................................................... 7 Discussion ..................................................................................................................................................................................................................................
Recommended publications
  • Effect of Aminophylline on Diaphragmatic Contractility in the Piglet
    003 1-3998/90/2803-0196$02.00/0 PEDIATRIC RESEARCH Vol. 28, No. 3, 1990 Copyright 0 1990 International Pediatric Research Foundation, Inc. Printed in (I.S.A. Effect of Aminophylline on Diaphragmatic Contractility in the Piglet DENNIS E. MAYOCK, THOMAS A. STANDAERT, JON F. WATCHKO, AND DAVID E. WOODRUM1 University of Washington School of Medicine, Department of Pediatrics, Division of Neonatal and Respiratory Diseases, Seattle, Washington 98195 ABSTRACT. Minute ventilation, arterial blood gases, ar- of arterial oxygen > 8 kPa (60 torr) in room air, and a partial terial pH, cardiac output, and transdiaphragmatic force pressure of the arterial carbon dioxide 5 6.7 kPa (50 torr) were generation, both during spontaneous ventilation and in accepted for study. The animals were anesthetized with an i.v. response to phrenic nerve stiwulation during airway occlu- combination of chloralose (30 mg/kg) and urethane (1 50 mg/ sion at end expiration, were measured in nine anesthetized, kg) and studied in the supine position. Subsequent infusions of tracheostomized piglets before and 30 min after parenteral anesthetic were used if the piglet developed jaw clonus. A trache- infusion of 20 mg/kg aminophylline. Serum theophylline ostomy was placed and connected to a two-way nonrebreathing levels averaged 109 f 21 ~mol/L(19.7 f 3.7 ~g/mL)at valve (model 2384, Hans Rudolph, Inc., Kansas City, MO). 30 min postinfusion. No significant changes were noted in Inspiratory flow was detected by a hot-wire anemometer and pH, blood gases, blood Pressure, or ventilatory measures integrated to provide tidal volume. All animals breathed 50% after aminophylline.
    [Show full text]
  • The Benefits of Flavonoids in Diabetic Retinopathy
    nutrients Review The Benefits of Flavonoids in Diabetic Retinopathy 1, 1, 2,3,4,5 1,2,3,4, Ana L. Matos y, Diogo F. Bruno y, António F. Ambrósio and Paulo F. Santos * 1 Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; [email protected] (A.L.M.); [email protected] (D.F.B.) 2 Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; [email protected] 3 Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal 4 Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal 5 Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal * Correspondence: [email protected]; Tel.: +351-239-240-762 These authors contributed equally to the work. y Received: 10 September 2020; Accepted: 13 October 2020; Published: 16 October 2020 Abstract: Diabetic retinopathy (DR), one of the most common complications of diabetes, is the leading cause of legal blindness among adults of working age in developed countries. After 20 years of diabetes, almost all patients suffering from type I diabetes mellitus and about 60% of type II diabetics have DR. Several studies have tried to identify drugs and therapies to treat DR though little attention has been given to flavonoids, one type of polyphenols, which can be found in high levels mainly in fruits and vegetables, but also in other foods such as grains, cocoa, green tea or even in red wine.
    [Show full text]
  • Aminophylline Catalog Number A1755 Storage
    Aminophylline Catalog Number A1755 Storage Temperature –20 °C Replacement for Catalog Number 216895 CAS RN 317-34-0 Storage/Stability Synonyms: theophylline hemiethylenediamine complex; Aminophylline should be kept tightly closed to prevent 3,7-dihydro-1,3-demethyl-1H-purine-2,6-dione CO2 absorption from the atmosphere, which leads to compound with 1,2-ethanediamine (2:1); formation of theophylline and decreased solubility in 1,2 3 (theophylline)2 • ethylenediamine aqueous solutions. Stock solutions should be protected from light and prevented from contact with Product Description metals.2 Molecular Formula: C7H8N4O2 ·1/2 (C2H8N2) Molecular Weight: 210.3 References 1. The Merck Index, 12th ed., Entry# 485. Aminophylline is a xanthine derivative which is a 2. Martindale: The Extra Pharmacopoeia, 31st ed., combination of theophylline and ethylenediamine that is Reynolds, J. E. F., ed., Royal Pharmaceutical more water soluble than theophylline alone. Society (London, England: 1996), pp. 1651-1652. Aminophylline has been widely used as an inhibitor of 3. Data for Biochemical Research, 3rd ed., Dawson, cAMP phosphodiesterase.3 R. M. C., et al., Oxford University Press (New York, NY: 1986), pp. 316-317. Aminophylline has been shown to limit 4. Pelech, S. L., et al., cAMP analogues inhibit phosphatidylcholine biosynthesis in cultured rat phosphatidylcholine biosynthesis in cultured rat hepatocytes.4 It has been used in studies of acute hepatocytes. J. Biol. Chem., 256(16), 8283-8286 hypoxemia in newborn and older guinea pigs.5 The (1981). effect of various xanthine derivatives, including 5. Crisanti, K. C., and Fewell, J. E., Aminophylline aminophylline, on activation of the cystic fibrosis alters the core temperature response to acute transmembrane conductance regulator (CFTR) chloride hypoxemia in newborn and older guinea pigs.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • The Functional Characterization of a Site-Specific Apigenin 4
    molecules Article The Functional Characterization of a Site-Specific Apigenin 40-O-methyltransferase Synthesized by the Liverwort Species Plagiochasma appendiculatum Hui Liu, Rui-Xue Xu, Shuai Gao and Ai-Xia Cheng * Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; [email protected] (H.L.); [email protected] (R.-X.X.); [email protected] (S.G.) * Correspondence: [email protected]; Tel.: +86-531-8838-2012; Fax: +86-531-8838-2019 Academic Editors: Qing-Wen Zhang and Chuangchuang Li Received: 5 April 2017; Accepted: 4 May 2017; Published: 7 May 2017 Abstract: Apigenin, a widely distributed flavone, exhibits excellent antioxidant, anti-inflammatory, and antitumor properties. In addition, the methylation of apigenin is generally considered to result in better absorption and greatly increased bioavailability. Here, four putative Class II methyltransferase genes were identified from the transcriptome sequences generated from the liverwort species Plagiochasma appendiculatum. Each was heterologously expressed as a His-fusion protein in Escherichia coli and their methylation activity against apigenin was tested. One of the four Class II OMT enzymes named 40-O-methyltransferase (Pa40OMT) was shown to react effectively with apigenin, catalyzing its conversion to acacetin. Besides the favorite substrate apigenin, the recombinant PaF40OMT was shown to catalyze luteolin, naringenin, kaempferol, quercetin, genistein, scutellarein, and genkwanin to the corresponding 40-methylation products. In vivo feeding experiments indicated that PaF40OMT could convert apigenin to acacetin efficiently in E. coli and approximately 88.8 µM (25.2 mg/L) of product was synthesized when 100 µM of apigenin was supplemented.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Proxyphylline Item No. 20937 CAS Registry No.: 603-00-9 Formal Name: 3,7-dihydro-7-(2-hydroxypropyl)-1,3- N dimethyl-1H-purine-2,6-dione O N Synonym: NSC 163343 C H N O MF: 10 14 4 3 N FW: 238.2 N Purity: ≥98% O UV/Vis.: λmax: 273, 324 nm Supplied as: A crystalline solid OH Storage: -20°C Stability: As supplied, 2 years from the QC date provided on the Certificate of Analysis, when stored properly Laboratory Procedures Proxyphylline is supplied as a crystalline solid. A stock solution may be made by dissolving the proxyphylline in the solvent of choice. Proxyphylline is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF), which should be purged with an inert gas. The solubility of proxyphylline in ethanol is approximately 1 mg/ml and approximately 10 mg/ml in DMSO and DMF. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of proxyphylline can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of proxyphylline in PBS, pH 7.2, is approximately 1 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Proxyphylline is a methylxanthine derivative that has bronchodilatory actions.1 It has also been reported 2 to have vasodilatory and cardiac stimulatory effects.
    [Show full text]
  • Caffeine Versus Aminophylline for Apnea of Prematurity: a Randomized Clinical Trial
    World Journal of Peri & Neonatology Vol. 2, No. 2, Fall 2019 Original Article http://wjpn.ssu.ac.ir Caffeine versus Aminophylline for Apnea of Prematurity: A Randomized Clinical Trial Mohamad Hosein Lookzadeh 1,2, Elaha Jafari-Abeshoori 2*, Mahmood Noorishadkam 1,2, Seyed Reza Mirjalili 1,2, Hamid Reza Mohammadi 3, Fatemeh Emambakhshsani 2 1 Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 2 Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 3 Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Received: 04 April 2020 Revised: 16 June 2020 Accepted: 20 July 2020 ARTICLE INFO ABSTRACT Corresponding author: Background: Apnea of prematurity is often found in preterm neonates Elaha Jafari-Abeshoori with gestational age less than 34-37 weeks or birth weight (BW) less than 1000 grams. The American Academy of Pediatrics defines apnea as a Email: [email protected] respiratory halt lasting at least 20 seconds, with bradycardia or cyanosis. Methylxanthines reduce the incidence of apnea. The purpose of this study Keywords: was to compare the effect of caffeine and aminophylline on the incidence Aminophylline, of the apnea in premature infants. Caffeine, Methods: This randomized clinical trial study was conducted on 80 Apnea, premature neonates at Shahid Sadoughi hospital in Yazd. The first group Prematurity received the initial dose of 5 mg/kg aminophylline diluted in 5% dextrose with a maintenance dose of 2 mg/kg every 8 hours, while the second group received 30 mg/kg of caffeine diluted in 5% dextrose with a 24-hour maintenance dose of 10 mg/kg.
    [Show full text]
  • The Xanthines (Theobromine and Aminophyllin)
    effect of this might conceivably escape detection in THE XANTHINES (THEOBROMINE AND individuals engaged in very heavy work. From this AMINOPHYLLINE) IN THE TREAT- point of view our subjects were particularly favorable for this since of as MENT OF CARDIAC PAIN study, most them, shown in the table, were not engaged in any occupation. HARRY M.D. GOLD, GLYCERYL TRINITRATE TEST NATHANIEL T. M.D. KWIT, Early in the course of the study it was believed AND desirable to HAROLD M.D. restrict the selection of patients to those OTTO, who could establish their qualifications for service in NEW YORK such a study as this by their ability to distinguish An endeavor was made in this study to secure evi- between the efficacy of glyceryl trinitrate taken under dence on the question of whether the xanthines relieve the tongue and a soluble placebo tablet taken in the cardiac pain. same manner for relief during attacks of pain. The SELECTION OF PATIENTS discovery of several patients who found the two equally effective those who had suffered an of The were 100 ambulant in attend- among attack subjects patients thrombosis and were to thoracic ance at the cardiac in whom the of coronary subject pain clinic, diagnosis on effort led us to abandon this restriction. arteriosclerotic heart disease with cardiac pain was made, in accordance with the nomenclature and criteria The results obtained in sixty patients in whom the the New York Heart Association.1 glyceryl trinitrate test was made are of some interest. adopted by These received trinitrate were selected from a total case load of patients glyceryl tablets, %0o They approxi- or cr 0.4 which were mately 700 patients, representing an average sample /4so grain (0.6 mg.), they of the cardiac clinic several racial directed to take under the tongue at the onset of an population, comprising attack of In of these of groups, both native and born.
    [Show full text]
  • Intravenous Aminophylline Treatment for Migraine
    Original Observations and Research Personal Observation: Intravenous Aminophylline Treatment for Migraine Michael Kenyon MD, Barry Phillips MD, Christiaan DeWit MBBCh About the Authors Michael Kenyon (near right) and Barry Phillips (far right) are internists, and Christiaan De Wit is an emergency room physician, all practising at Mills Memorial Hospital, in Terrace, British Columbia. Correspondence may be directed to: [email protected] igraine is common condition, often affecting young inhibitor and adenosine antagonist. It has been shown in Mpatients and causing disruption in the home and dipyridamole (Persantine) MIBI studies that dipyridamole workplace alike. The impact of patients presenting to administration inhibits adenosine deaminase in red-cell emergency room services with intractable headache is membranes, increasing blood levels of adenosine. This induces significant, often tying up space and resources in the tedious coronary vasodilation through a low-affinity interaction with wait for a narcotic and sedative “cure.” In Canada alone, 3.2 the A2a receptor. The antidote, aminophylline, preferentially million adults suffer from migraines, and the condition costs binds to this receptor, displacing adenosine and curtailing its the Canadian economy an estimated $500 million annually. effect. 3,4 Absenteeism and loss of productivity resulting from migraines Aminophylline has traditionally and principally been used cost $20 every second. 1 as an intravenously or orally administered bronchodilator in Mills Memorial Hospital is a regional referral centre in asthmatics. Caution in its use should be observed in patients Terrace, British Columbia, serving a population of 70,000 with active peptic ulceration, a low seizure threshold, people. Between June 2011 and January 2012, 21 patients came hypokalemia, tachyarrhythmias, and acute congestive heart to the emergency room (ER) suffering from symptoms failure (CHF).
    [Show full text]
  • Serbian Journal of Experimental and Clinical Research Vol12
    Editor-in-Chief Slobodan Janković Co-Editors Nebojša Arsenijević, Miodrag Lukić, Miodrag Stojković, Milovan Matović, Slobodan Arsenijević, Nedeljko Manojlović, Vladimir Jakovljević, Mirjana Vukićević Board of Editors Ljiljana Vučković-Dekić, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia Dragić Banković, Faculty for Natural Sciences and Mathematics, University of Kragujevac, Kragujevac, Serbia Zoran Stošić, Medical Faculty, University of Novi Sad, Novi Sad, Serbia Petar Vuleković, Medical Faculty, University of Novi Sad, Novi Sad, Serbia Philip Grammaticos, Professor Emeritus of Nuclear Medicine, Ermou 51, 546 23, Th essaloniki, Macedonia, Greece Stanislav Dubnička, Inst. of Physics Slovak Acad. Of Sci., Dubravska cesta 9, SK-84511 Bratislava, Slovak Republic Luca Rosi, SAC Istituto Superiore di Sanita, Vaile Regina Elena 299-00161 Roma, Italy Richard Gryglewski, Jagiellonian University, Department of Pharmacology, Krakow, Poland Lawrence Tierney, Jr, MD, VA Medical Center San Francisco, CA, USA Pravin J. Gupta, MD, D/9, Laxminagar, Nagpur – 440022 India Winfried Neuhuber, Medical Faculty, University of Erlangen, Nuremberg, Germany Editorial Staff Ivan Jovanović, Gordana Radosavljević, Nemanja Zdravković Vladislav Volarević Management Team Snezana Ivezic, Milan Milojevic, Bojana Radojevic, Ana Miloradovic Corrected by Scientifi c Editing Service “American Journal Experts” Design PrstJezikIostaliPsi - Miljan Nedeljković Print Medical Faculty, Kragujevac Indexed in EMBASE/Excerpta Medica, Index Copernicus, BioMedWorld, KoBSON,
    [Show full text]
  • Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
    Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination.
    [Show full text]