Substance Abuse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Addiction Stigma Language- the Words We Use Matter
naabt.org The National Alliance of Advocates for Buprenorphine Treatment The Words We Use Matter. Reducing Stigma through Language. Why does language matter? Stigma remains the biggest barrier to addiction treatment faced by patients. Changing the stigma will benefit everyone. It will allow patients to The terminology used to describe addiction has contributed to the stigma. more easily regain their self esteem, allow lawmakers to appropriate Many derogatory, stigmatizing terms were championed throughout the “War funding, allow doctors to treat without disapproval of their peers, allow on Drugs” in an effort to dissuade people from misusing substances. Education insurers to cover treatment, and help the public understand this is a took a backseat, mainly because little was known about the science of medical condition as real as any other. addiction. That has changed, and the language of addiction medicine should be changed to reflect today’s greater understanding. By choosing language Choosing the words we use more carefully is one way we can all make that is not stigmatizing, we can begin to dismantle the negative stereotype a difference and help decrease the stigma. associated with addiction. “…In discussing substance use disorders, words can be powerful when used to inform, clarify, encourage, support, enlighten, and unify. On the other hand, stigmatizing words often discourage, isolate, misinform, shame, and embarrass…” Excerpt from “Substance Use Disorders: A Guide to the Use of Language” published by CSAT and SAMHSA Words to avoid and alternatives. Following are stigmatizing words and phrases which could be replaced Habit or Drug Habit with the suggested “preferred terminology” as a start in reducing the Problem with the terms: Calling addictive disorders a habit denies stigma associated with addiction. -
Effect of Aminophylline on Diaphragmatic Contractility in the Piglet
003 1-3998/90/2803-0196$02.00/0 PEDIATRIC RESEARCH Vol. 28, No. 3, 1990 Copyright 0 1990 International Pediatric Research Foundation, Inc. Printed in (I.S.A. Effect of Aminophylline on Diaphragmatic Contractility in the Piglet DENNIS E. MAYOCK, THOMAS A. STANDAERT, JON F. WATCHKO, AND DAVID E. WOODRUM1 University of Washington School of Medicine, Department of Pediatrics, Division of Neonatal and Respiratory Diseases, Seattle, Washington 98195 ABSTRACT. Minute ventilation, arterial blood gases, ar- of arterial oxygen > 8 kPa (60 torr) in room air, and a partial terial pH, cardiac output, and transdiaphragmatic force pressure of the arterial carbon dioxide 5 6.7 kPa (50 torr) were generation, both during spontaneous ventilation and in accepted for study. The animals were anesthetized with an i.v. response to phrenic nerve stiwulation during airway occlu- combination of chloralose (30 mg/kg) and urethane (1 50 mg/ sion at end expiration, were measured in nine anesthetized, kg) and studied in the supine position. Subsequent infusions of tracheostomized piglets before and 30 min after parenteral anesthetic were used if the piglet developed jaw clonus. A trache- infusion of 20 mg/kg aminophylline. Serum theophylline ostomy was placed and connected to a two-way nonrebreathing levels averaged 109 f 21 ~mol/L(19.7 f 3.7 ~g/mL)at valve (model 2384, Hans Rudolph, Inc., Kansas City, MO). 30 min postinfusion. No significant changes were noted in Inspiratory flow was detected by a hot-wire anemometer and pH, blood gases, blood Pressure, or ventilatory measures integrated to provide tidal volume. All animals breathed 50% after aminophylline. -
Association of Hypertensive Status and Its Drug Treatment with Lipid and Haemostatic Factors in Middle-Aged Men: the PRIME Study
Journal of Human Hypertension (2000) 14, 511–518 2000 Macmillan Publishers Ltd All rights reserved 0950-9240/00 $15.00 www.nature.com/jhh ORIGINAL ARTICLE Association of hypertensive status and its drug treatment with lipid and haemostatic factors in middle-aged men: the PRIME Study P Marques-Vidal1, M Montaye2, B Haas3, A Bingham4, A Evans5, I Juhan-Vague6, J Ferrie`res1, G Luc2, P Amouyel2, D Arveiler3, D McMaster5, JB Ruidavets1, J-M Bard2, PY Scarabin4 and P Ducimetie`re4 1INSERM U518, Faculte´ de Me´decine Purpan, Toulouse, France; 2MONICA-Lille, Institut Pasteur de Lille, Lille, France; 3MONICA-Strasbourg, Laboratoire d’Epide´miologie et de Sante´ Publique, Strasbourg, France; 4INSERM U258, Hoˆ pital Broussais, Paris, France; 5Belfast-MONICA, Department of Epidemiology, The Queen’s University of Belfast, UK; 6Laboratory of Haematology, La Timone Hospital, Marseille, France Aims: To assess the association of hypertensive status this effect remained after multivariate adjustment. Cal- and antihypertensive drug treatment with lipid and hae- cium channel blockers decreased total cholesterol and mostatic levels in middle-aged men. apoproteins A-I and B; those differences remained sig- Methods and results: Hypertensive status, antihyperten- nificant after multivariate adjustment. ACE inhibitors sive drug treatment, total and high-density lipoprotein decreased total cholesterol, triglycerides, apoprotein B (HDL) cholesterol, triglyceride, apoproteins A-I and B, and LpE:B; and this effect remained after multivariate lipoparticles LpA-I, -
The In¯Uence of Medication on Erectile Function
International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted. -
Addiction and Substance Abuse in Anesthesiology Ethan O
Ⅵ REVIEW ARTICLES David S. Warner, M.D., and Mark A. Warner, M.D., Editors Anesthesiology 2008; 109:905–17 Copyright © 2008, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Addiction and Substance Abuse in Anesthesiology Ethan O. Bryson, M.D.,* Jeffrey H. Silverstein, M.D.† Despite substantial advances in our understanding of addic- idents, and 19% reported at least one pretreatment tion and the technology and therapeutic approaches used to fatality.2 Substantial advances have occurred in our fight this disease, addiction still remains a major issue in the understanding of addiction as well as both the tech- anesthesia workplace, and outcomes have not appreciably changed. Although alcoholism and other forms of impair- nology and therapeutic approaches used to fight this ment, such as addiction to other substances and mental ill- disease, although outcomes have not appreciably ness, impact anesthesiologists at rates similar to those in changed. Starting with a brief review of the basic other professions, as recently as 2005, the drug of choice for concepts of addiction, this article highlights the cur- anesthesiologists entering treatment was still an opioid. rent thoughts regarding the pathophysiologic basis of There exists a considerable association between chemical dependence and other psychopathology, and successful addiction, as well as clinical manifestations, legal is- treatment for addiction is less likely when comorbid psycho- sues, and treatment strategies. pathology is not treated. Individuals under evaluation or Anesthesiologists (as well as any physician) may suffer treatment for substance abuse should have an evaluation from addiction to any number of substances, though with subsequent management of comorbid psychiatric con- addiction to opioids remains the most common. -
Aminophylline Catalog Number A1755 Storage
Aminophylline Catalog Number A1755 Storage Temperature –20 °C Replacement for Catalog Number 216895 CAS RN 317-34-0 Storage/Stability Synonyms: theophylline hemiethylenediamine complex; Aminophylline should be kept tightly closed to prevent 3,7-dihydro-1,3-demethyl-1H-purine-2,6-dione CO2 absorption from the atmosphere, which leads to compound with 1,2-ethanediamine (2:1); formation of theophylline and decreased solubility in 1,2 3 (theophylline)2 • ethylenediamine aqueous solutions. Stock solutions should be protected from light and prevented from contact with Product Description metals.2 Molecular Formula: C7H8N4O2 ·1/2 (C2H8N2) Molecular Weight: 210.3 References 1. The Merck Index, 12th ed., Entry# 485. Aminophylline is a xanthine derivative which is a 2. Martindale: The Extra Pharmacopoeia, 31st ed., combination of theophylline and ethylenediamine that is Reynolds, J. E. F., ed., Royal Pharmaceutical more water soluble than theophylline alone. Society (London, England: 1996), pp. 1651-1652. Aminophylline has been widely used as an inhibitor of 3. Data for Biochemical Research, 3rd ed., Dawson, cAMP phosphodiesterase.3 R. M. C., et al., Oxford University Press (New York, NY: 1986), pp. 316-317. Aminophylline has been shown to limit 4. Pelech, S. L., et al., cAMP analogues inhibit phosphatidylcholine biosynthesis in cultured rat phosphatidylcholine biosynthesis in cultured rat hepatocytes.4 It has been used in studies of acute hepatocytes. J. Biol. Chem., 256(16), 8283-8286 hypoxemia in newborn and older guinea pigs.5 The (1981). effect of various xanthine derivatives, including 5. Crisanti, K. C., and Fewell, J. E., Aminophylline aminophylline, on activation of the cystic fibrosis alters the core temperature response to acute transmembrane conductance regulator (CFTR) chloride hypoxemia in newborn and older guinea pigs. -
Rosemary)-Derived Ingredients As Used in Cosmetics
Safety Assessment of Rosmarinus Officinalis (Rosemary)-Derived Ingredients as Used in Cosmetics Status: Tentative Amended Report for Public Comment Release Date: March 28, 2014 Panel Meeting Date: June 9-10, 2014 All interested persons are provided 60 days from the above release date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. Lillian J. Gill. The 2014 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This safety assessment was prepared by Monice M. Fiume, Assistant Director/Senior Scientific Analyst. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200♢ Washington, DC 20036 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] TABLE OF CONTENTS Abstract ...................................................................................................................................................................................................................................... -
An Advanced Drug Delivery System Targeting Brain Through BBB
pharmaceutics Review Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB Mantosh Kumar Satapathy 1 , Ting-Lin Yen 1,2,† , Jing-Shiun Jan 1,†, Ruei-Dun Tang 1,3, Jia-Yi Wang 3,4,5 , Rajeev Taliyan 6 and Chih-Hao Yang 1,5,* 1 Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; [email protected] (M.K.S.); [email protected] (T.-L.Y.); [email protected] (J.-S.J.); [email protected] (R.-D.T.) 2 Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan 3 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; [email protected] 4 Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan 5 Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan 6 Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India; [email protected] * Correspondence: [email protected]; Tel.: +886-2-2736-1661 (ext. 3197) † These authors contributed equally to this work. Abstract: The blood–brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among Citation: Satapathy, M.K.; Yen, T.-L.; some of the limitations associated with current neurotherapeutics. -
Accurate Measurement, and Validation of Solubility Data † ‡ ‡ § † ‡ Víctor R
Article Cite This: Cryst. Growth Des. 2019, 19, 4101−4108 pubs.acs.org/crystal In the Context of Polymorphism: Accurate Measurement, and Validation of Solubility Data † ‡ ‡ § † ‡ Víctor R. Vazqueź Marrero, , Carmen Piñero Berríos, , Luz De Dios Rodríguez, , ‡ ∥ ‡ § Torsten Stelzer,*, , and Vilmalí Lopez-Mej́ ías*, , † Department of Biology, University of Puerto RicoRío Piedras Campus, San Juan, Puerto Rico 00931, United States ‡ Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926, United States § Department of Chemistry, University of Puerto RicoRío Piedras Campus, San Juan, Puerto Rico 00931, United States ∥ Department of Pharmaceutical Sciences, University of Puerto RicoMedical Sciences Campus, San Juan, Puerto Rico 00936, United States *S Supporting Information ABSTRACT: Solubility measurements for polymorphic com- pounds are often accompanied by solvent-mediated phase transformations. In this study, solubility measurements from undersaturated solutions are employed to investigate the solubility of the two most stable polymorphs of flufenamic acid (FFA forms I and III), tolfenamic acid (TA forms I and II), and the only known form of niflumic acid (NA). The solubility was measured from 278.15 to 333.15 K in four alcohols of a homologous series (methanol, ethanol, 1- propanol, n-butanol) using the polythermal method. It was established that the solubility of these compounds increases with increasing temperature. The solubility curves of FFA forms I and III intersect at ∼315.15 K (42 °C) in all four solvents, which represents the transition temperature of the enantiotropic pair. In the case of TA, the solubility of form II could not be reliably obtained in any of the solvents because of the fast solvent- mediated phase transformation. -
Addiction Medicine
Supplemental Guide for Addiction Medicine Supplemental Guide: Addiction Medicine January 2019 Supplemental Guide for Addiction Medicine Milestones Supplemental Guide This document provides additional guidance and examples for the Addiction Medicine Milestones. This is not designed to indicate any specific requirements for each level, but to provide insight into the thinking of the Milestone Work Group. Included in this document is the intent of each Milestone and examples of what a Clinical Competency Committee (CCC) might expect to be observed/assessed at each level. Also included are suggested assessment models and tools for each subcompetency, references, and other useful information. Review this guide with the CCC and faculty members. As the program develops a shared mental model of the Milestones, consider creating an individualized guide (Supplemental Guide Template available) with institution/program-specific examples, assessment tools used by the program, and curricular components. 2 Supplemental Guide for Addiction Medicine Patient Care 1: Screening, Evaluation, Differential Diagnosis, and Case Formulation of the Patient with or at Risk for Substance Use, Addictive Disorders, and Comorbidities Overall Intent: To correctly identify patient on continuum from low risk to substance use disorder (meeting DSM-5 criteria) while recognizing other medical and psychiatric conditions and contributing social factors Milestones Examples Level 1 Uses validated screening and • Correctly administers a National Institute on Alcohol Abuse and Alcoholism -
Sharon R. Roseman, MD, FACP Practice Limited to Gastroenterology
Sharon R. Roseman, MD, FACP Practice Limited to Gastroenterology 701 Broad Street, Suite 411 Sewickley, PA 15143 (412) 749-7160 Fax: (412) 749-7388 http://www.heritagevalley.org/sharonrosemanmd Patient Drug Education for Diltiazem / Nifedipine Ointment Diltiazem/Nifedipine ointment is used to help heal anal fissures. The ointment relaxes the smooth muscle around the anus and promotes blood flow which helps heal the fissure (tear). The ointment reduces anal canal pressure, which diminishes pain and spasm. We use a diluted concentration of Diltiazem/Nifedipine compared to what is typically used for heart patients, and this is why you need to obtain the medication from a pharmacy which will compound your prescription. It is also prescribed to treat anal sphincter spasm, painful hemorrhoids and pelvic floor spasm. The Diltiazem/Nifedipine ointment should be applied 3 times per day, or as directed. A pea-sized drop should be placed on the tip of your finger and then gently placed inside the anus. The finger should be inserted 1/3 – 1/2 its length and may be covered with a plastic glove or finger cot. You may use Vaseline ® to help coat the finger or dilute the ointment. (If you are unable or hesitant to use your finger to administer the ointment TELL U S and we will order you a suppository to use as an “applicator”.) If you are advised to mix the Diltiazem/Nifedipine with steroid ointment, limit the steroids to one to two weeks. The first few applications should be taken lying down, as mild light- headedness or a brief headache may occur. -
Valproate-Olanzapine-Nifedipine Interaction Related Pedal Edema
Letter-to-the Editor Taiwanese Journal of Psychiatry (Taipei) Vol. 28 No. 3 2014 • 181 • Valproate-olanzapine-nifedipine Interaction Related Pedal Edema Patient’s bilateral pedal pitting edema did not Case Report resolve spontaneously after discontinuing olan- zapine until he received diuretics with furosemide A 45-year-old single male patient with bipo- 40 mg/day and spironolactone 75 mg/day on the lar I disorder was admitted to acute ward of our 21st day of pitting edema. He required further hospital due to depressive mood with irritability treatment, and had normal fi ndings in physical ex- for more than one month. The fi nding of physical amination and repeated laboratory tests. examination at admission revealed no bilateral pedal edema under long-term usage of valproate Comment 700 mg/day as mood stabilizer, nifedipine 30 mg/ day for essential hypertension, and allopurinol There have been some clinical reports to as- 100 mg/day for gouty arthritis before hospitaliza- sociate olanzapine treatment with bilateral lower tion. The results of laboratory tests for electro- extremity edema since 2000 [1]. Pre-clinical trials lytes, renal function, liver function, chest X-ray, of oral olanzapine (doses being equal or greater and electrocardiography were also within normal than 2.5 mg/day) have also reported peripheral limits. edema as a rare adverse event. The pathophysio- During this hospitalization, we added olan- logical mechanism of low extremity edema re- zapine 5 mg/day to control manic symptoms. Five mains unknown, although some mechanisms days later, he reported bilateral swelling over low- could be proposed, such as olanzapine’s blockage er legs and ankles, a bilateral 2+ pitting edema in of α1, M1, M3 and 5-HT2 receptors [2, 3].