Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance

Total Page:16

File Type:pdf, Size:1020Kb

Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance 0031-6997/05/5703-289–298$7.00 PHARMACOLOGICAL REVIEWS Vol. 57, No. 3 Copyright © 2005 by The American Society for Pharmacology and Experimental Therapeutics 50301/3048484 Pharmacol Rev 57:289–298, 2005 Printed in U.S.A Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance STEVEN C. PRINSTER, CHRIS HAGUE, AND RANDY A. HALL Department of Pharmacology, Emory University School of Medicine, Atlanta Georgia Abstract ............................................................................... 289 I. Introduction............................................................................ 289 A. GABAB receptors .................................................................... 290 B. Taste receptors ...................................................................... 291 C. Adrenergic receptors ................................................................. 291 D. Opioid receptors ..................................................................... 292 E. Somatostatin receptors............................................................... 292 F. Purinergic receptors ................................................................. 293 G. Olfactory receptors .................................................................. 293 H. Vasopressin, oxytocin, and other receptors ............................................. 294 II. Clinical significance of G protein-coupled receptor heterodimerization........................ 294 III. Conclusions ............................................................................ 296 Acknowledgments....................................................................... 296 References ............................................................................. 296 Abstract——G protein-coupled receptors (GPCRs) ity. Even those GPCRs that do not absolutely require are cell surface receptors that mediate physiological heterodimerization may still specifically associate responses to a diverse array of stimuli. GPCRs have with other GPCR subtypes, sometimes resulting in traditionally been thought to act as monomers, but dramatic effects on receptor pharmacology, signaling, recent evidence suggests that GPCRs may form dimers and/or internalization. Understanding the specificity (or higher-order oligomers) as part of their normal and functional significance of GPCR heterodimeriza- trafficking and function. In fact, certain GPCRs seem tion is of tremendous clinical importance since GPCRs to have a strict requirement for heterodimerization to are the molecular targets for numerous therapeutic attain proper surface expression and functional activ- drugs. I. Introduction merous physiological processes and are the targets of many clinically important drugs, with approximately The largest class of cell surface receptors in mamma- half of all current prescription drugs acting through lian genomes is the superfamily of G protein-coupled receptors (GPCRs1). Of the approximately 1000 genes GPCRs (Drews, 1996). thought to encode GPCRs in humans, about 300 to 400 GPCRs are characterized structurally by an amino- mediate the effects of endogenous ligands, with the re- terminal extracellular domain, a carboxyl-terminal in- mainder being sensory receptors. GPCRs mediate nu- tracellular domain, and seven hydrophobic transmem- brane domains. The interaction of an agonist with a Address correspondence to: Randy A. Hall, Department of Phar- GPCR binding pocket elicits or stabilizes a conforma- macology, Emory University School of Medicine, 5113 Rollins Re- search Center, 1510 Clifton Rd., Atlanta, GA 30322. E-mail: tional change in the receptor’s transmembrane domains. [email protected] This conformational change allows the receptor to asso- Article, publication date, and citation information can be found at ciate with heterotrimeric G proteins and initiate a sig- http://pharmrev.aspetjournals.org. naling cascade inside the cell leading to a physiological doi:10.1124/pr.57.3.1. 1Abbreviations: GPCR, G protein-coupled receptor; mGluR, response (Lefkowitz et al., 1993). GPCRs have tradition- metabotropic glutamate receptor; ER, endoplasmic reticulum; AR, ally been thought to act as monomers, but this idea has adrenergic receptor; OPR, opioid peptide receptor; SSTR, somatosta- been challenged over the past few years by accumulating tin type receptor; OR, olfactory receptor; OTR, oxytocin receptor; pharmacological and biochemical data. The emerging 5-HT, serotonin; TRH, thyrotropin-releasing hormone; HIV, human immunodeficiency virus; Fz, frizzled; FEVR, familial exudative vit- view in the field is that the primary functional GPCR reoretinopathy. signaling unit may actually consist of dimers or oli- 289 290 PRINSTER ET AL. gomers of receptors (Jordan et al., 2000; Marshall, 2001; However, it was found to physically assemble with George et al., 2002; Kroeger et al., 2003; Milligan, 2004; GABABR1 when the two receptors were coexpressed in Terrillon and Bouvier, 2004b). cells, resulting in the formation of functional GABAB Many transmembrane receptors are known to dimer- receptors that trafficked efficiently to the cell surface ize as part of their normal function, with receptor ty- and possessed many of the properties ascribed to neuro- rosine kinases being a particularly well studied exam- nal GABAB receptors (Marshall et al., 1999). These stud- ple. The idea that GPCRs might also dimerize was first ies provided strong evidence that heterodimerization is proposed in 1982 (Agnati et al., 1982), although the idea essential for GABAB receptor function. did not gain wide acceptance until more than a decade The interaction between GABABR1 and GABABR2 ap- later. Early evidence for GPCR dimerization came from pears to be quite specific in nature. However, GABABR1 unexplained cooperativity observed in ligand binding is found in many brain regions that do not detectably assays and unexpectedly large estimates of the size of express GABABR2 (Jones et al., 1998; Kaupmann et al., receptor complexes on gel filtration columns. Detailed 1998; Durkin et al., 1999; Kuner et al., 1999; Margeta- descriptions of these early studies are available in sev- Mitrovic et al., 1999; Ng et al., 1999; Calver et al., 2000; eral previous reviews (Angers et al., 2002; Agnati et al., Clark et al., 2000; Ige et al., 2000; Charara et al., 2004), 2003). and therefore, several groups have explored the possi- Multimerization of GPCRs was originally proposed bility that GABABR1 might be able to assemble with based on studies investigating the propensity of certain other GPCRs to form functional receptors in these re- GPCRs to dimerize with themselves (“homodimeriza- gions of the brain. The eight members of the metabo- tion”). There is now a growing list of receptors that have tropic glutamate receptor (mGluR) family are the closest been found to associate with other receptors (“het- relatives of the GABAB receptors in terms of primary erodimerization”). One concern in the field has been that sequence (Kaupmann et al., 1997); thus, the various GPCR heterodimerization might be an artifact of recep- mGluR subtypes have received special attention as po- tor over-expression and/or a result of the techniques tential partners for GABABR1 (Ng et al., 1999; Pagano used to study receptor associations. Such concerns are et al., 2001; Balasubramanian et al., 2004). One group best addressed by considering the evidence that these found no evidence for association of any of the mGluR receptor-receptor interactions are specific versus non- subtypes with GABABR1 (Pagano et al., 2001), whereas specific and that they are functionally important versus a second group reported an interaction with mGluR4 physiologically irrelevant. This review will focus on the that did not appear to be of functional significance (Sul- current state of research on GPCR heterodimerization, livan et al., 2000). A third group performed a much with an emphasis on the specificity of these interactions wider screen for the ability of other GPCRs to promote and their functional significance. GABABR1 surface expression and found no evidence that any of the mGluR subtypes or 30 other GPCRs A. GABAB Receptors examined could enhance the targeting of GABABR1 to Although the concept of GPCR heterodimerization the cell surface. These studies did reveal, although, a was initially proposed in the early 1980’s (Agnati et al., surprising interaction between GABABR1 and GABAA 1982), the first widely accepted demonstration of func- receptors (Balasubramanian et al., 2004). However, in tional consequences for GPCR heterodimerization came terms of heterodimerization with other GPCRs, the cur- ␥ from the GABAB receptors. -Aminobutyric acid (GABA) rent evidence suggests a high degree of specificity in the is the main inhibitory neurotransmitter in the mamma- interaction between GABABR1 and GABABR2. lian brain, and the physiological actions of GABA are The structural determinants of the GABABR1/ mediated via activation of three distinct types of cell GABABR2 interaction have been examined in some de- surface receptors: GABAA and GABAC receptors, which tail. Both receptors have coiled-coil regions on their car- are ligand-gated chloride channels, and GABAB recep- boxyl-termini that physically interact with each other in tors, which are GPCRs. In 1997, the first GABAB recep- yeast two-hybrid and fusion protein pull-down assays tor cDNA was cloned (Kaupmann et al., 1997). This (White et al., 1998; Kuner et al., 1999). However, it receptor was termed GABABR1 and found to bind to
Recommended publications
  • The Roles Played by Highly Truncated Splice Variants of G Protein-Coupled Receptors Helen Wise
    Wise Journal of Molecular Signaling 2012, 7:13 http://www.jmolecularsignaling.com/content/7/1/13 REVIEW Open Access The roles played by highly truncated splice variants of G protein-coupled receptors Helen Wise Abstract Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism.
    [Show full text]
  • GABAB Receptors and Pain
    King’s Research Portal DOI: 10.1016/j.neuropharm.2017.05.012 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Malcangio, M. (2017). GABAB receptors and pain. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2017.05.012 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Activation Mechanism of the G Protein-Coupled Sweet Receptor Heterodimer with Sweeteners and Allosteric Agonists
    Supporting Information Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists Soo-Kyung Kim, *† Yalu Chen, † Ravinder Abrol, †, ‡ William A. Goddard III,*† and Brian Guthrie§ †Materials and Process Simulation Center (MC 139-74), California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125; ‡Current address, Departments of Chemistry and Biochemistry, California State University, Northridge, CA 91330; §Cargill Global Food Research, 2301 Crosby Road, Wayzata, MN 55391 * CORRESPONDING AUTHOR Prof. William A. Goddard III California Institute of Technology MC 139-74, 1200 E. California Blvd., Pasadena, CA 91125; phone: 1-626-395-2731, e-mail: [email protected] Dr. Soo-Kyung Kim phone: 1-626-395-2724, e-mail: [email protected] 1 RESULTS Structures for Allosteric ligand bound at the TMD of all three TAS1Rs As described in the METHODS section, the DarwinDock procedure (1) involves sampling ~50,000 poses for each of ~10 diverse ligand conformations from which, we select finally two energetically favorable binding poses based on two scoring methods: UCav E: unified cavity energy for which we consider that interactions of the best 100 poses with the union of all residues involve in their separate binding sites (providing a uniform comparison) BE: snap binding energy considering all interactions of ligand with protein As a first validation of the predicted structures for the 7 helix TMD, we used DarwinDock to predict the binding site for the allosteric ligands to each TAS1R TMD in Table S10. Here we find, S819 [1-((1H-pyrrol-2-yl)methyl)-3-(4-isopropoxyphenyl)thiourea] is a sweet compound that interacts with the TAS1R2 TMD.(2) and Lactisole is a competitive inhibitor of the sweet taste receptor that binds to TAS1R3 TMD.(3, 4) These structures were further relaxed through annealing.
    [Show full text]
  • Functioning of the Dimeric GABAB Receptor Extracellular Domain Revealed by Glycan Wedge Scanning
    Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning Philippe Rondard1§, Siluo Huang2§, Carine Monnier1, Haijun Tu2, Bertrand Blanchard1, Nadia Oueslati1, Fanny Malhaire1, Ying Li2, Eric Trinquet3, Gilles Labesse4,5, Jean-Philippe Pin1 & Jianfeng Liu2 1 CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France and INSERM, U661, Montpellier, France and Université Montpellier 1,2, Montpellier F-34000, France. 2, Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, China 3 CisBio International, Parc technologique Marcel Boiteux, Bagnols/Cèze cedex F-30204, France 4, Centre de Biochimie Structurale, CNRS UMR5048, Université Montpellier 1, Montpellier F-34060, France 5 INSERM U414, Montpellier, F-34094 France § P.R. and S.H. contributed equally to this work Correspondence should be addressed to J.P.P ([email protected]) and J.L. ([email protected]). Running title : Functional analysis of GABAB receptor VFTs using N-glycans Total character count (including spaces) : 55,058 1 Abstract The G-protein coupled receptor activated by the neurotransmitter GABA is made up of two subunits, GABAB1 and GABAB2. While GABAB1 binds agonists, GABAB2 is required for trafficking GABAB1 to the cell surface, increasing agonist affinity to GABAB1, and activating associated G-proteins. These subunits each comprise two domains, a Venus flytrap (VFT) domain and a heptahelical (7TM) domain. How agonist binding to the GABAB1 VFT leads to GABAB2 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABAB VFT dimer controls receptor activity.
    [Show full text]
  • Exploring the Heteromeric Interface of the 5-HT2A-Mglu2 Receptor Complex
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2020 Exploring the Heteromeric Interface of the 5-HT2A-mGlu2 Receptor Complex Mohamed Aarif Abdul Kareem Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Nervous System Diseases Commons, Other Psychiatry and Psychology Commons, Physiological Processes Commons, and the Translational Medical Research Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/6235 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Exploring the Heteromeric Interface of the 5-HT2A-mGlu2 Receptor Complex A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physiology and Biophysics at Virginia Commonwealth University By: Mohamed Aarif Abdul Kareem B.A. Neurobiology, Boston University, 2018 Mentor: Javier González-Maeso Associate Professor Department of Physiology and Biophysics Virginia Commonwealth University Richmond, Virginia April 30, 2020 Acknowledgments: Thank you to my peers for their continued support of my dreams and aspirations. Thank you to my mentors for pushing and supporting me every step of the way. Thank you to Virginia Commonwealth University for providing opportunities which foster my passion for science and allow it to continue to flourish. Indeed, I owe much gratitude to my parents, Abdul & Jasmine Kareem, who have guided me in becoming a strong, independent student, and encourage me to take calculated risks and face challenges head on.
    [Show full text]
  • Neurotransmission: Receptor Signaling
    Neurotransmission - receptor and channel signaling GPCRs TYROSINE KINASES ION CHANNELS Neurotrophins BDNF NGF NT-3 Glutamate GABA ACh GDNF Neurturin Artemin Persepin NT-4/5 Glutamate Anandamide ATP Glycine γ 2 1 4 3 / α α α 2-AG α β / α A GFR GFR GFR GFR NTR mGLuR A/B/C X1, 2, 3 CB1/2 2 EphA/B* Ephrin RET Trk p75 AMPA/KainateNMDAR P GABA GlyR nAChR IP3 Lyn released Ephexin Fyn Rapsin Homer DAG Adenylate PI3K Grb4 Src PSD95 HAP1 Syntrophin i PD Shc Gephyrin Gi/q cyclase Gi K PLC GABARAP NcK 2RGS3 PI3 Shc + 2+ 2+ GRIF1 PI3K PLC γ Na Ca Ca P PI3K Grb2 PLCβ/γ PKC nNOS γ FAK PiP3/4 SOS MEK CaM Cl- Gephyrin Cl- ER NFkB PDEI PKA Rac RhoA RasGAP Src PTEN PKC Ras GTPase ERK CaMK Cl- 2+ PKK2 Calcineurin Ca ROCK ERK FRS2 AKT/PKB released Raf JNK nNOS SynGAP Grb2 actin MEK 1/2 P Ser133 Inhibition Excitation Src SOS Cell survival CREB of signaling of signaling RAS P CREB ERK 1/2 P P MAPK GSK3 ELK RSK NFκB CREB CREB gene Long term Cytoskeleton transcription synaptic dynamics, neurite ASK1 Bad CRE plasticity (LTP) P P extension CREB CREB Short term MKK3/6 Apoptosis plasticity Others Other GPCRs - ARA9 ACh (Muscarinic): M1, M2, M3, M4 CRE p38MAPK c-fos Potassium - ASICβ, ASIC3 Adrenalin: Alpha1b, 1c, 1d - KChIP2 - DDR 1, 2 ATP: P2Y MSK1 c-jun c-fos gene - KCNQ 3, 5 - ENSA Dopamine: D1, D4 transcription - Kv beta 2 - GJB1 GABA: GABAB receptor - Kv 1.2 - SLC31A1 μ δ κ P P Opioid: , , CREB CREB AP1 - Kv 1.3 - TRAR4 Neurotensin: 1, 2 Growth, - Kv 1.4 - TRPM7 Neurokinin: NKA, NKB, NK1, Calcitonin development & Sodium - Kv 2.2 - VR1 * forward/reverse signalling
    [Show full text]
  • The Association of Bovine T1R Family of Receptors Polymorphisms with Cattle Growth Traits ⇑ C.L
    Research in Veterinary Science xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Research in Veterinary Science journal homepage: www.elsevier.com/locate/rvsc The association of bovine T1R family of receptors polymorphisms with cattle growth traits ⇑ C.L. Zhang a, J. Yuan a, Q. Wang a, Y.H. Wang a, X.T. Fang a, C.Z. Lei b, D.Y. Yang c, H. Chen a, a Institute of Cellular and Molecular Biology, Xuzhou Normal University, Xuzhou, Jiangsu, PR China b College of Animal Science and Technology, Northwest Agriculture and Forestry University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, PR China c College of Life Science, Dezhou University, Dezhou, Shandong 253023, PR China article info abstract Article history: The three members of the T1R class of taste-specific G protein-coupled receptors have been proven to Received 12 August 2011 function in combination with heterodimeric sweet and umami taste receptors in many mammals that Accepted 20 January 2012 affect food intake. This may in turn affect growth traits of livestock. We performed a comprehensive eval- Available online xxxx uation of single-nucleotide polymorphisms (SNPs) in the bovine TAS1R gene family, which encodes receptors for umami and sweet tastes. Complete DNA sequences of TAS1R1-, TAS1R2-, and TAS1R3-cod- Keywords: ing regions, obtained from 436 unrelated female cattle, representing three breeds (Qinchuan, Jiaxian Red, Taste receptors Luxi), revealed substantial coding and noncoding diversity. A total of nine SNPs in the TAS1R1 gene were SNP identified, among which seven SNPs were in the coding region, and two SNPs were in the introns.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Inflammatory Modulation of Hematopoietic Stem Cells by Magnetic Resonance Imaging
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014 Inflammatory modulation of hematopoietic stem cells by Magnetic Resonance Imaging (MRI)-detectable nanoparticles Sezin Aday1,2*, Jose Paiva1,2*, Susana Sousa2, Renata S.M. Gomes3, Susana Pedreiro4, Po-Wah So5, Carolyn Ann Carr6, Lowri Cochlin7, Ana Catarina Gomes2, Artur Paiva4, Lino Ferreira1,2 1CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal, 2Biocant, Biotechnology Innovation Center, Cantanhede, Portugal, 3King’s BHF Centre of Excellence, Cardiovascular Proteomics, King’s College London, London, UK, 4Centro de Histocompatibilidade do Centro, Coimbra, Portugal, 5Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK, 6Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, UK, 7PulseTeq Limited, Chobham, Surrey, UK. *These authors contributed equally to this work. #Correspondence to Lino Ferreira ([email protected]). Experimental Section Preparation and characterization of NP210-PFCE. PLGA (Resomers 502 H; 50:50 lactic acid: glycolic acid) (Boehringer Ingelheim) was covalently conjugated to fluoresceinamine (Sigma- Aldrich) according to a protocol reported elsewhere1. NPs were prepared by dissolving PLGA (100 mg) in a solution of propylene carbonate (5 mL, Sigma). PLGA solution was mixed with perfluoro- 15-crown-5-ether (PFCE) (178 mg) (Fluorochem, UK) dissolved in trifluoroethanol (1 mL, Sigma). This solution was then added to a PVA solution (10 mL, 1% w/v in water) dropwise and stirred for 3 h. The NPs were then transferred to a dialysis membrane and dialysed (MWCO of 50 kDa, Spectrum Labs) against distilled water before freeze-drying. Then, NPs were coated with protamine sulfate (PS).
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Neurotransmission Alphabetical 28/7/05 15:52 Page 1
    neuroscience - Neurotransmission alphabetical 28/7/05 15:52 Page 1 Abcam’s range of Neuroscience receptor, channel and ligand antibodies includes over 320 tried and tested products www.abcam.com Neurotransmission - receptor and channel signaling www.abcam.com GPCRs TYROSINE KINASES ION CHANNELS Neurotrophins rin u BDNF rt NGF u NT-3 Glutamate GABA ACh GDNF Ne Artemin Persepin NT-4/5 Glutamate Anandamide ATP Glycine ␥ 2-AG 1 2 3 4 / ␣ ␣ ␣ ␣ R / u A GFR GFR GFR GFR NTR mGL X1, 2, 3 CB1/2 2 EphA/B* Ephrin RET TrkA/B/C p75 AMPA/KainateNMDAR P GABA GlyR nAChR IP3 released Lyn Ephexin Homer DAG Adenylate Fyn PI3K Gr Src PSD95 Rapsin i PD2RGS3 Shc Syntrophin b K PLC Gi/q cyclase Gi 4 NcK PI3 Shc + 2+ 2+ PI3K PLC ␥ Na Ca Ca P PI3K Grb2 PLC␤/␥ PKC nNOS ␥ FAK PiP3/4 SOS MEK CaM Cl- Cl- ER NFkB PDEI PKA Rac RhoA RasGAP Src PTEN PKC Ras GTPase ERK CaMK 2+ PKK2 Calcineurin Ca released ROCK ERK FRS2 AKT/PKB Raf JNK nNOS SynGAP Grb2 actin MEK 1/2 P Ser133 Inhibition Cl- Src SOS Cell survival CREB of signaling RAS P CREB ERK 1/2 P P MAPK GSK3 ELK RSK NF␬B CREB CREB gene Long term Cytoskeleton transcription synaptic dynamics, neurite ASK1 Bad CRE plasticity (LTP) P P extension CREB CREB Short term MKK3/6 Apoptosis plasticity Others Other GPCRs - ARA9 ACh (Muscarinic): M1, M2, M3, M4 CRE p38MAPK c-fos Potassium - ASIC␤, ASIC3 Adrenalin: Alpha1b, 1c, 1d - KChIP2 - DDR 1, 2 ATP: P2Y MSK1 c-j c-fos gene - KCNQ 3, 5 - ENSA Dopamine: D1, D4 u transcription - Kv beta 2 - GJB1 n GABA: GABAB receptor - Kv 1.2 - SLC31A1 ␦ ␬ P P Opioid: µ, , CREB CREB AP1 - Kv
    [Show full text]