RX FAMILY Renesas 32-Bit Microcontrollers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Schedule 14A Employee Slides Supertex Sunnyvale
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 SCHEDULE 14A Proxy Statement Pursuant to Section 14(a) of the Securities Exchange Act of 1934 Filed by the Registrant Filed by a Party other than the Registrant Check the appropriate box: Preliminary Proxy Statement Confidential, for Use of the Commission Only (as permitted by Rule 14a-6(e)(2)) Definitive Proxy Statement Definitive Additional Materials Soliciting Material Pursuant to §240.14a-12 Supertex, Inc. (Name of Registrant as Specified In Its Charter) Microchip Technology Incorporated (Name of Person(s) Filing Proxy Statement, if other than the Registrant) Payment of Filing Fee (Check the appropriate box): No fee required. Fee computed on table below per Exchange Act Rules 14a-6(i)(1) and 0-11. (1) Title of each class of securities to which transaction applies: (2) Aggregate number of securities to which transaction applies: (3) Per unit price or other underlying value of transaction computed pursuant to Exchange Act Rule 0-11 (set forth the amount on which the filing fee is calculated and state how it was determined): (4) Proposed maximum aggregate value of transaction: (5) Total fee paid: Fee paid previously with preliminary materials. Check box if any part of the fee is offset as provided by Exchange Act Rule 0-11(a)(2) and identify the filing for which the offsetting fee was paid previously. Identify the previous filing by registration statement number, or the Form or Schedule and the date of its filing. (1) Amount Previously Paid: (2) Form, Schedule or Registration Statement No.: (3) Filing Party: (4) Date Filed: Filed by Microchip Technology Incorporated Pursuant to Rule 14a-12 of the Securities Exchange Act of 1934 Subject Company: Supertex, Inc. -
Ultrascale Architecture PCB Design User Guide (UG583)
UltraScale Architecture PCB Design User Guide UG583 (v1.21) June 3, 2021 Revision History The following table shows the revision history for this document. Date Version Revision 06/03/2021 1.21 Chapter 1: Added Recommended Decoupling Capacitor Quantities for Zynq UltraScale+ Devices in UBVA530 Package. In Table 1-13, added row for 1.0 µF. Chapter 2: Added PCB Routing Guidelines for LPDDR4 Memories in High-Density Interconnect Boards. 02/12/2021 1.20 Chapter 1: Added XCKU19P to Table 1-4. Added XCVU23P-FFVJ1760 to Table 1-5. Added XCVU57P-FSVK2892 to Table 1-7. Added VU57P to Table 1-8. Updated first sentence in VCCINT_VCU Plane Design and Power Delivery. Chapter 2: Updated item 13 in General Memory Routing Guidelines. Updated first paragraph in PCB Guidelines for DDR4 SDRAM (PL and PS). Added Routing Rule Changes for Thicker Printed Circuit Boards. Chapter 3: Added XCZU42DR to Table 3-1. Added paragraph about clock forwarding capability in Gen 3 RFSoC devices to Recommended Clocking Options. Added Table 3-11. Updated Powering RFSoCs with Switch Regulators. Added Power Delivery Network Design for Time Division Duplex. Chapter 4: Added bullet about device without DQS pin to DDR Mode (100 MHz). In SD/SDIO, added note about external pull-up resistor after fifth bullet, and added two bullets about level shifters. Chapter 11: Replaced I/O with I/O/PSIO in Unconnected VCCO Pins. 09/02/2020 1.19 Chapter 1: In Table 1-4, updated packages for XQKU5P and XCVU7P, added row for XCVU23P-VSVA1365, and updated note 3. In Table 1-9, updated packages for XCZU3CG, XCZU6CG, XCZU9CG, XCZU3EG, XCZU6EG, XCZU9EG, and XCZU15EG. -
PERL – a Register-Less Processor
PERL { A Register-Less Processor A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by P. Suresh to the Department of Computer Science & Engineering Indian Institute of Technology, Kanpur February, 2004 Certificate Certified that the work contained in the thesis entitled \PERL { A Register-Less Processor", by Mr.P. Suresh, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. (Dr. Rajat Moona) Professor, Department of Computer Science & Engineering, Indian Institute of Technology, Kanpur. February, 2004 ii Synopsis Computer architecture designs are influenced historically by three factors: market (users), software and hardware methods, and technology. Advances in fabrication technology are the most dominant factor among them. The performance of a proces- sor is defined by a judicious blend of processor architecture, efficient compiler tech- nology, and effective VLSI implementation. The choices for each of these strongly depend on the technology available for the others. Significant gains in the perfor- mance of processors are made due to the ever-improving fabrication technology that made it possible to incorporate architectural novelties such as pipelining, multiple instruction issue, on-chip caches, registers, branch prediction, etc. To supplement these architectural novelties, suitable compiler techniques extract performance by instruction scheduling, code and data placement and other optimizations. The performance of a computer system is directly related to the time it takes to execute programs, usually known as execution time. The expression for execution time (T), is expressed as a product of the number of instructions executed (N), the average number of machine cycles needed to execute one instruction (Cycles Per Instruction or CPI), and the clock cycle time (), as given in equation 1. -
M32R Family Software Manual MITSUBISHI 32-BIT SINGLE-CHIP MICROCOMPUTER
To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. -
Computer Architecture Basics
V03: Computer Architecture Basics Prof. Dr. Anton Gunzinger Supercomputing Systems AG Technoparkstrasse 1 8005 Zürich Telefon: 043 – 456 16 00 Email: [email protected] Web: www.scs.ch Supercomputing Systems AG Phone +41 43 456 16 00 Technopark 1 Fax +41 43 456 16 10 8005 Zürich www.scs.ch Computer Architecture Basic 1. Basic Computer Architecture Diagram 2. Basic Computer Architectures 3. Von Neumann versus Harvard Architecture 4. Computer Performance Measurement 5. Technology Trends 2 Zürich 20.09.2019 © by Supercomputing Systems AG CONFIDENTIAL 1.1 Basic Computer Architecture Diagram Sketch the basic computer architecture diagram Describe the functions of the building blocks 3 Zürich 20.09.2019 © by Supercomputing Systems AG CONFIDENTIAL 1.2 Basic Computer Architecture Diagram Describe the execution of a single instruction 5 Zürich 20.09.2019 © by Supercomputing Systems AG CONFIDENTIAL 2 Basic Computer Architecture 2.1 Sketch an Accumulator Machine 2.2 Sketch a Register Machine 2.3 Sketch a Stack Machine 2.4 Sketch the analysis of computing expression in a Stack Machine 2.5 Write the micro program for an Accumulator, a Register and a Stack Machine for the instruction: C:= A + B and estimate the numbers of cycles 2.6 Write the micro program for an Accumulator, a Register and a Stack Machine for the instruction: C:= (A - B)2 + C and estimate the numbers of cycles 2.7 Compare Accumulator, Register and Stack Machine 7 Zürich 20.09.2019 © by Supercomputing Systems AG CONFIDENTIAL 2.1 Accumulator Machine Draw the Accumulator Machine 8 Zürich -
Computers, Complexity, and Controversy
Instruction Sets and Beyond: Computers, Complexity, and Controversy Robert P. Colwell, Charles Y. Hitchcock m, E. Douglas Jensen, H. M. Brinkley Sprunt, and Charles P. Kollar Carnegie-Mellon University t alanc o tyreceived Instruction set design is important, but lt1Mthi it should not be driven solely by adher- ence to convictions about design style, ,,tl ica' ch m e n RISC or CISC. The focus ofdiscussion o09 Fy ipt issues. RISC should be on the more general question of the assignment of system function- have guided ality to implementation levels within years. A study of an architecture. This point of view en- d yield a deeper un- compasses the instruction set-CISCs f hardware/software tend to install functionality at lower mputer performance, the system levels than RISCs-but also JOCUS on rne assignment iluence of VLSI on processor design, takes into account other design fea- ofsystem functionality to and many other topics. Articles on tures such as register sets, coproces- RISC research, however, often fail to sors, and caches. implementation levels explore these topics properly and can While the implications of RISC re- within an architecture, be misleading. Further, the few papers search extend beyond the instruction and not be guided by that present comparisons with com- set, even within the instruction set do- whether it is a RISC plex instruction set computer design main, there are limitations that have or CISC design. often do not address the same issues. not been identified. Typical RISC As a result, even careful study of the papers give few clues about where the literature is likely to give a distorted RISC approach might break down. -
Embedded Electronic Coding System
1 GUARD FOR BLIND PEOPLE GUARD FOR BLIND PEOPLE ELECTRONICS AND COMMUNICATION LITAM 2 GUARD FOR BLIND PEOPLE ABSTRACT Aim of this project is to design and develop the electronic guard for blind people on embedded plat form. This project was developed for keep the right way for blind people. It has two important units; they are object detecting sensor unit and micro-controller alarm unit. The object detecting sensor is sense the opposite objects, if the blind person is going to hit any object, the sensor sense that object and given to controller. The controller activates the driver circuit; it will produce the alarm sound, now the people easily identify the opposite object. ELECTRONICS AND COMMUNICATION LITAM 3 GUARD FOR BLIND PEOPLE CHAPTER 1 INTRODUCTION ELECTRONICS AND COMMUNICATION LITAM 4 GUARD FOR BLIND PEOPLE 1.1 METHODOLOGY OF STUDY An embedded based electronic code locking system is designed and implemented using PIC Micro controller to make security. The entire project was developed under embedded systems. EMBEDDED SYSTEMS: A system is something that maintains its existence and functions as a whole through the interaction of its parts. E.g. Body, Mankind, Access Control, etc A system is a part of the world that a person or group of persons during some time interval and for some purpose choose to regard as a whole, consisting of interrelated components, each component characterized by properties that are selected as being relevant to the purpose. • Embedded System is a combination of hardware and software used to achieve a single specific task. • Embedded systems are computer systems that monitor, respond to, or control an external environment. -
Programmable Digital Microcircuits - a Survey with Examples of Use
- 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention. -
FLEX 10K Embedded Programmable Logic Family Data Sheet
FLEX 10K ® Embedded Programmable Logic Family October 1998, ver. 3.13 Data Sheet Features... ■ The industryÕs first embedded programmable logic device (PLD) family, providing system integration in a single device Ð Embedded array for implementing megafunctions, such as efficient memory and specialized logic functions Ð Logic array for general logic functions ■ High density Ð 10,000 to 250,000 typical gates (see Tables 1 and 2) Ð Up to 40,960 RAM bits; 2,048 bits per embedded array block (EAB), all of which can be used without reducing logic capacity ■ System-level features Ð MultiVoltª I/O interface support Ð 5.0-V tolerant input pins in FLEX¨ 10KA devices Ð Low power consumption (typical specification less than 0.5 mA in standby mode for most devices) Ð FLEX 10K and FLEX 10KA devices support peripheral component interconnect Special Interest GroupÕs (PCI-SIG) PCI Local Bus Specification, Revision 2.1 Ð FLEX 10KA devices include pull-up clamping diode, selectable on a pin-by-pin basis for 3.3-V PCI compliance Ð Select FLEX 10KA devices support 5.0-V PCI buses with eight or fewer loads Ð Built-in JTAG boundary-scan test (BST) circuitry compliant with IEEE Std. 1149.1-1990, available without consuming any device logic Table 1. FLEX 10K Device Features Feature EPF10K10 EPF10K20 EPF10K30 EPF10K40 EPF10K50 EPF10K10A EPF10K30A EPF10K50V Typical gates (logic and RAM), 10,000 20,000 30,000 40,000 50,000 Note (1) Usable gates 7,000 to 15,000 to 22,000 to 29,000 to 36,000 to 31,000 63,000 69,000 93,000 116,000 Logic elements (LEs) 576 1,152 1,728 2,304 2,880 Logic array blocks (LABs) 72 144 216 288 360 Embedded array blocks (EABs) 366810 Total RAM bits 6,144 12,288 12,288 16,384 20,480 Maximum user I/O pins 134 189 246 189 310 Altera Corporation 1 A-DS-F10K-03.13 FLEX 10K Embedded Programmable Logic Family Data Sheet Table 2. -
VISION Calibration and Data Acquisition Software Toolkits
VISION TM Toolkits VISION • No-Hooks • OnTarget • MBC VISION Calibration and Data Acquisition Software Toolkits ATI VISION Calibration and Data Acquisition software is modular in design based. The modularity of VISION toolkits provides the ability to customize VISION based on a desired level of functionality. VISION toolkits are task based feature groups that are based on customer usage models in the calibration and data acquisition fields. A VISION toolkit configuration can range from a single toolkit to view and analyze recorded data to a full ECU calibration solution with Rapid Prototyping features. Cost effective packages can easily be created based on end user need. This document contains the available VISION toolkits as of VISION 6.0. VISION Toolkits and Descriptions: Part Number Name Description Base VISION 3 Build device tree (All devices can be added to the tree, but cannot go online with any particular device unless the necessary toolkit is enabled). 3 Configure ATI hardware. 3 Acquire data from ATI Data Acquisition hardware into VISION recorders and screen objects (Not ECU Interfaces unless the appropriate ECU Interface Toolkit is enabled). 3 View data on a Data List (This is the only screen object available to view data). 3 CAN Trace object (Only ATI branded CAN Interface unless VISION Third Party CAN Interface Toolkit is enabled). 3 Configure Network Hub Logger functionality (Limited to only ATI Data Acquisition items or CAN objects unless ECU Interface Toolkits are present to enable configuring acquisition of ECU data items). 3 Retrieve data files from Network Hub Logger (Including attaching a DBC file upon NONE VISION Base retrieving of the files to convert CAN messages to signals). -
ABSTRACT Virtualizing Register Context
ABSTRACT Virtualizing Register Context by David W. Oehmke Chair: Trevor N. Mudge A processor designer may wish for an implementation to support multiple reg- ister contexts for several reasons: to support multithreading, to reduce context switch overhead, or to reduce procedure call/return overhead by using register windows. Conventional designs require that each active context be present in its entirety, increasing the size of the register file. Unfortunately, larger register files are inherently slower to access and may lead to a slower cycle time or additional cycles of register access latency, either of which reduces overall performance. We seek to bypass the trade-off between multiple context support and register file size by mapping registers to memory, thereby decoupling the logical register requirements of active contexts from the contents of the physical register file. Just as caches and virtual memory allow a processor to give the illusion of numerous multi-gigabyte address spaces with an average access time approach- ing that of several kilobytes of SRAM, we propose an architecture that gives the illusion of numerous active contexts with an average access time approaching that of a single active context using a conventionally sized register file. This dis- sertation introduces the virtual context architecture, a new architecture that virtual- izes logical register contexts. Complete contexts, whether activation records or threads, are kept in memory and are no longer required to reside in their entirety in the physical register file. Instead, the physical register file is treated as a cache of the much larger memory-mapped logical register space. The implementation modifies the rename stage of the pipeline to trigger the movement of register val- ues between the physical register file and the data cache. -
FM-ONE Flash Memory MCU PROGRAMMER for the Operation Procedures
FM-ONE Flash memory MCU PROGRAMMER For the Operation Procedures CONTENTS◆ IMPORTANT ..................................................................................... 1 ON-BOARD PROGRAMMER ........................................................... 2 FM-ONE FUTURES ................................................ 2 SPECIFICATIONS .................................................... 2 【Package Style】 ................................................................. 2 【Product and contained accessories】................................. 3 【The provided CD includes】 ............................................... 3 【Brief specifications of the main body】 ............................... 4 【Specifications of FM-ONE Project File Maker】 ............... 4 【Parts names】 .................................................................... 5 【Side of body】 .................................................................... 5 Battery Holder Guidance ........................................................... 6 About some changes on display for upgrade ............................ 7 Preparation ................................................................................ 8 Installation of FM-ONE Project File Maker ............. 8 Target board ............................................................. 9 Connector and Cable ................................................ 9 CONNECTION IMAGE ............................................................ 9 Insertion of CF .......................................................... 9 RECOGNITION OF