ECE 4750 Computer Architecture Topic 1: Microcoding

Total Page:16

File Type:pdf, Size:1020Kb

ECE 4750 Computer Architecture Topic 1: Microcoding ECE 4750 Computer Architecture Topic 1: Microcoding Christopher Batten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece4750 slide revision: 2013-09-01-10-42 Instruction Set Architecture Microcoded MIPS Processor Microcoding Discussion & Trends Agenda Instruction Set Architecture IBM 360 Instruction Set MIPS Instruction Set ISA to Microarchitecture Mapping Microcoded MIPS Processor Microcoded MIPS Microarchitecture #1 Microcoded MIPS Microarchitecture #2 Microcoding Discussion and Trends ECE 4750 T01: Microcoding 2 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends Instruction Set Architecture I Contract between software & hardware Application Algorithm I Typically specified as all of the Programming Language programmer-visible state (registers & Operating System memory) plus the semantics of instructions Instruction Set Architecture Microarchitecture that operate on this state Register-Transfer Level IBM 360 was first line of machines to Gate Level I Circuits separate ISA from microarchitecture and Devices implementation Physics ... the structure of a computer that a machine language programmer must understand to write a correct (timing independent) program for that machine. — Amdahl, Blaauw, Brooks, 1964 ECE 4750 T01: Microcoding 3 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends Compatibility Problem at IBM I By early 1960’s, IBM had several incompatible lines of computers! . Defense : 701 . Scientific : 704, 709, 7090, 7094 . Business : 702, 705, 7080 . Mid-Sized Business : 1400 . Decimal Architectures : 7070, 7072, 7074 I Each system had its own: . Instruction set . I/O system and secondary storage (tapes, drums, disks) . Assemblers, compilers, libraries, etc . Market niche ECE 4750 T01: Microcoding 4 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends IBM 360: A General-Purpose Register Machine I Processor State . 16 general-purpose 32-bit registers . 4 floating point 64-bit registers . Program counter (PC), condition codes, control flags I Data Format . 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words . IBM 360 is why bytes are 8-bits long today! I Instruction Format . Variable length from 2–6 bytes long I Memory Addressing . 32-bit machine with only 24-bit addressing ECE 4750 T01: Microcoding 5 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends IBM 360: Initial Implementations Model 30 Model 70 Storage 8–64 KB 256–512 KB Datapath 8-bit 64-bit Circuit Delay 30 ns/level 5 ns/level Local Store Main store Transistor registers Control Store Read only 1µs Conventional circuits IBM 360 instruction set architecture (ISA) completely hid the underlying technological differences between various models Significant Milestone: The first true ISA designed as a portable hardware-software interface ECE 4750 T01: Microcoding 6 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends IBM 360: 45 years later ... The zSeries Z196 Microprocessor I 5.2 GHz in IBM 45 nm SOI I 1.4B transistors in 512 mm2 I Four cores per chip I Aggressive out-of-order execution I Four-level cache hierarchy with embedded DRAM L3/L4 I Available in September 2010 I Can still run IBM 360 code! — Hot Chips 2010 ECE 4750 T01: Microcoding 7 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends MIPS32 Instruction Set I Processor State . 32 general-purpose 32-bit registers . 32 SP (16 DP) floating-point regs . Program counter, FP status reg I Data Format . 8-bit bytes, 16-bit half-words, 32-bit words . 32-bit single-precision, 64-bit double-precision floating-point I Instruction Format . Fixed-length 32-bit instructions I Memory Addressing . Data addressing with immediate and indexed . Branch addressing with PC relative and register indirect . Byte addressable memory as big or little endian ECE 4750 T01: Microcoding 8 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends Data FoMIPSrma Datats an Formatsd Mem &o Memoryry Add Addressingresses Data formats: Bytes, Half words, words and double words Some issues Most Significant Least Significant •! Byte addressing Byte Byte Big Endian 0 1 2 3 vs. Little Endian 3 2 1 0 Byte Addresses •! Word alignment Suppose the memory is organized in 32-bit words. Can a word address begin only at 0, 4, 8, .... ? 0 1 2 3 4 5 6 7 ECE 4750 T01: Microcoding 9 / 45 January 24, 2011 CS152 Spring 2011 11 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends MIPS Instruction Formats 6 5 5 5 5 6 ALU 0 rs rt rd 0 func R[rd] R[rs] func R[rt] 31 26 25 21 20 16 15 11 10 6 5 0 6 5 5 16 ALUI opcode rs rt immediate R[rt] R[rs] op immediate 31 26 25 21 20 16 15 0 6 5 5 16 ST: M[ R[rs] + sext(offset) ] R[rt] LD/ST opcode rs rt offset LD: R[rt] M[ R[rs] + sext(offset) ] 31 26 25 21 20 16 15 0 6 5 5 16 if ( R[rs] == 0 ) BEQZ opcode rs 0 offset PC PC+4 + offset*4 31 26 25 21 20 16 15 0 6 5 5 16 PC R[rs] JR/JALR opcode rs 0 0 JALR also does R[31] PC+8 31 26 25 21 20 16 15 0 6 26 PC jtarg( PC, target ) J/JAL opcode target JAL also does R[31] PC+8 31 26 25 0 ECE 4750 T01: Microcoding 10 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends More Information on MIPS32 I Hennessy & Patterson, “Computer Architecture,” 5th ed, App. A I Harris & Harris, “Digital Design & Computer Architecture,” 2nd ed, Ch. 6, App. B I Sweetman, “See MIPS Run Linux,” 2nd ed I The MIPS32/64 Instruction Set manual (http://www.mips.com) ECE 4750 T01: Microcoding 11 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends ISA to Microarchitecture Mapping Status Application Signals ControlAlgorithm Unit Programming Language Control Signals Operating System Instruction Set Architecture Logic State Logic Datapath Microarchitecture Register-Transfer Level Gate Level Circuits I Microarchitectural Structure:Devices Physics How components are statically connected together I Microarchitectural Function: How data is dynamically processed or stored in components ECE 4750 T01: Microcoding 12 / 45 • Instruction Set Architecture • Microcoded MIPS Processor Microcoding Discussion & Trends Many Microarchitectures are Possible I ISA map to many similar yet distinct microarchitectures & impls . 360 ! IBM 360 Model 30, IBM Z196 . x86 ! Intel 80486, AMD Bobcat, VIA Nano . ARM ! Cellphone implementations from TI, Qualcomm, Samsung . PARC ! Labs: pipelined with stalling, pipelined with bypassing I Architectural design patterns capture common classes of instruction sets and a suitable microarchitectural template . CISC ! microcoded . RISC ! hardwired, pipelined . VLIW ! fixed-latency in-order parallel pipelines . JVM ! software interpretation I ISAs can always be implemented with alternative microarchitectures . Intel Nehalem: Hardwired pipelined CISC proc, w/ some µcode . ARM Jazelle: A hardwired JVM processor . This lecture: A microcoded RISC (MIPS) processor ECE 4750 T01: Microcoding 13 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Agenda Instruction Set Architecture IBM 360 Instruction Set MIPS Instruction Set ISA to Microarchitecture Mapping Microcoded MIPS Processor Microcoded MIPS Microarchitecture #1 Microcoded MIPS Microarchitecture #2 Microcoding Discussion and Trends ECE 4750 T01: Microcoding 14 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Why Look Microprogramming at Now? I To show how to build very small processors with complex ISAs I Because it is still used in most common machines I As a gentle introduction to machine structures I To help you understand where CISC machines came from I To help understand how technology drove the move to RISC ECE 4750 T01: Microcoding 15 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Microcoding: Embed ctrl logic state in memory array holds fixed microcode instructions busy? zero? µcontroller opcode (ROM) Datapath Data Addr Memory enMem (RAM) MemWrt holds user program written in macrocode — Maurice Wilkes, 1954 instructions (e.g., MIPS, x86, etc.) ECE 4750 T01: Microcoding 16 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Bus-Based Datapath for MIPS Opcode zero? busy ldIR OpSel ldA ldB 32(PC) ldMA 31(Link) rd rt 2 rs RegSel MA rd 3 rt addr addr IR rs A B 32 GPRs ExtSel + PC ... Memory Imm ALU RegWrt MemWrt 2 Ext control ALU 32-bit Reg enReg enImm enALU data data enMem Bus 32 Microinstruction: register to register transfer (17 control signals) MA ← PC means RegSel = PC; enReg=yes; ldMA = yes B ← Reg[rt] means RegSel = rt; enReg=yes; ldB = yes ECE 4750 T01: Microcoding 17 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Memory Module Assumption: Memory operates independently and is slow compared to addr busy register-to-register transfers (multiple CPU Write(1)/Read(0) RAM we clock cycles per access) Enable din dout bus ECE 4750 T01: Microcoding 18 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Instruction Execution Steps I 1. Instruction fetch I 2. Decode and register fetch I 3. ALU operation I 4. Memory operation if required I 5. Register write-back if required I — Computation of the next instruction to fetch ECE 4750 T01: Microcoding 19 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Microprogram Fragments I Instruction Fetch I ALUI . MA PC . A R[rs] . IR Memory . B Imm (sign extend?) . A PC . R[rt] opcode(A,B) . PC A + 4 . do instruction fetch . dispatch on opcode I LW I ALU . A R[rs] . A R[rs] . B Imm (sign extend?) . B R[rt] . MA A + B . R[rd] func(A,B) . R[rt] Memory . do instruction fetch . do instruction fetch ECE 4750 T01: Microcoding 20 / 45 Instruction Set Architecture • Microcoded MIPS Processor • Microcoding Discussion & Trends Microprogram Fragments I J I BEQZ . A PC . A R[rs] . B IR . if zero?(A) then goto br-taken .
Recommended publications
  • The Instruction Set Architecture
    Quiz 0 Lecture 2: The Instruction Set Architecture COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 2 Quiz 0 CD 3 Miles of Music 3 4 Pits and Lands Interpretation 0 1 1 1 0 1 0 1 As Music: 011101012 = 117/256 position of speaker As Number: Transition represents a bit state (1/on/red/female/heads) 01110101 = 1 + 4 + 16 + 32 + 64 = 117 = 75 No change represents other state (0/off/white/male/tails) 2 10 16 (Get comfortable with base 2, 8, 10, and 16.) As Text: th 011101012 = 117 character in the ASCII codes = “u” 5 6 Interpretation – ASCII Princeton Computer Science Building West Wall 7 8 Interpretation Binary Code and Data (Hello World!) • Programs consist of Code and Data • Code and Data are Encoded in Bits IA-64 Binary (objdump) As Music: 011101012 = 117/256 position of speaker As Number: 011101012 = 1 + 4 + 16 + 32 + 64 = 11710 = 7516 As Text: th 011101012 = 117 character in the ASCII codes = “u” CAN ALSO BE INTERPRETED AS MACHINE INSTRUCTION! 9 Interfaces in Computer Systems Instructions Sequential Circuit!! Software: Produce Bits Instructing Machine to Manipulate State or Produce I/O Computers process information State Applications • Input/Output (I/O) Operating System • State (memory) • Computation (processor) Compiler Firmware Instruction Set Architecture Input Output Instruction Set Processor I/O System Datapath & Control Computation Digital Design Circuit Design • Instructions instruct processor to manipulate state Layout • Instructions instruct processor to produce I/O in the same way Hardware: Read and Obey Instruction Bits 12 State State – Main Memory Typical modern machine has this architectural state: Main Memory (AKA: RAM – Random Access Memory) 1.
    [Show full text]
  • Microcode Revision Guidance August 31, 2019 MCU Recommendations
    microcode revision guidance August 31, 2019 MCU Recommendations Section 1 – Planned microcode updates • Provides details on Intel microcode updates currently planned or available and corresponding to Intel-SA-00233 published June 18, 2019. • Changes from prior revision(s) will be highlighted in yellow. Section 2 – No planned microcode updates • Products for which Intel does not plan to release microcode updates. This includes products previously identified as such. LEGEND: Production Status: • Planned – Intel is planning on releasing a MCU at a future date. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment.
    [Show full text]
  • Simple Computer Example Register Structure
    Simple Computer Example Register Structure Read pp. 27-85 Simple Computer • To illustrate how a computer operates, let us look at the design of a very simple computer • Specifications 1. Memory words are 16 bits in length 2. 2 12 = 4 K words of memory 3. Memory can be accessed in one clock cycle 4. Single Accumulator for ALU (AC) 5. Registers are fully connected Simple Computer Continued 4K x 16 Memory MAR 12 MDR 16 X PC 12 ALU IR 16 AC Simple Computer Specifications (continued) 6. Control signals • INCPC – causes PC to increment on clock edge - [PC] +1 PC •ACin - causes output of ALU to be stored in AC • GMDR2X – get memory data register to X - [MDR] X • Read (Write) – Read (Write) contents of memory location whose address is in MAR To implement instructions, control unit must break down the instruction into a series of register transfers (just like a complier must break down C program into a series of machine level instructions) Simple Computer (continued) • Typical microinstruction for reading memory State Register Transfer Control Line(s) Next State 1 [[MAR]] MDR Read 2 • Timing State 1 State 2 During State 1, Read set by control unit CLK - Data is read from memory - MDR changes at the Read beginning of State 2 - Read is completed in one clock cycle MDR Simple Computer (continued) • Study: how to write the microinstructions to implement 3 instructions • ADD address • ADD (address) • JMP address ADD address: add using direct addressing 0000 address [AC] + [address] AC ADD (address): add using indirect addressing 0001 address [AC] + [[address]] AC JMP address 0010 address address PC Instruction Format for Simple Computer IR OP 4 AD 12 AD = address - Two phases to implement instructions: 1.
    [Show full text]
  • A Superscalar Out-Of-Order X86 Soft Processor for FPGA
    A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel
    [Show full text]
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • Operating Guide
    Operating Guide EPIA-P830 Mainboard EPIA-P830 Operating Guide Table of Contents Table of Contents .......................................................................................................................................................................................... i VIA EPIA-P830 overview.............................................................................................................................................................................1 VIA EPIA-P830 layout ..................................................................................................................................................................................2 VIA EPIA-P830 specifications ...................................................................................................................................................................3 VIA EPIA-P830 processor SKUs ...............................................................................................................................................................4 VIA VX900 chipset overview.....................................................................................................................................................................5 VIA EPIA-P830 and P830-A board dimensions.................................................................................................................................6 VIA P830-B board dimensions.................................................................................................................................................................7
    [Show full text]
  • PIC Family Microcontroller Lesson 02
    Chapter 13 PIC Family Microcontroller Lesson 02 Architecture of PIC 16F877 Internal hardware for the operations in a PIC family MCU direct Internal ID, control, sequencing and reset circuits address 7 14-bit Instruction register 8 MUX program File bus Select 8 Register 14 8 8 W Register (Accumulator) ADDR Status Register MUX Flash Z, C and DC 9 Memory Data Internal EEPROM RAM 13 Peripherals 256 Byte Program Registers counter Ports data 368 Byte 13 bus 2011 Microcontrollers-... 2nd Ed. Raj KamalA to E 3 8-level stack (13-bit) Pearson Education 8 ALU Features • Supports 8-bit operations • Internal data bus is of 8-bits 2011 Microcontrollers-... 2nd Ed. Raj Kamal 4 Pearson Education ALU Features • ALU operations between the Working (W) register (accumulator) and register (or internal RAM) from a register-file • ALU operations can also be between the W and 8-bits operand from instruction register (IR) • The operations also use three flags Z, C and DC/borrow. [Zero flag, Carry flag and digit (nibble) carry flag] 2011 Microcontrollers-... 2nd Ed. Raj Kamal 5 Pearson Education ALU features • The destination of result from ALU operations can be either W or register (f) in file • The flags save at status register (STATUS) • PIC CPU is a one-address machine (one operand specified in the instruction for ALU) 2011 Microcontrollers-... 2nd Ed. Raj Kamal 6 Pearson Education ALU features • Two operands are used in an arithmetic or logic operations • One is source operand from one a register file/RAM (or operand from instruction) and another is W-register • Advantage—ALU directly operates on a register or memory similar to 8086 CPU 2011 Microcontrollers-..
    [Show full text]
  • A Simple Processor
    CS 240251 SpringFall 2019 2020 FoundationsPrinciples of Programming of Computer Languages Systems λ Ben Wood A Simple Processor 1. A simple Instruction Set Architecture 2. A simple microarchitecture (implementation): Data Path and Control Logic https://cs.wellesley.edu/~cs240/s20/ A Simple Processor 1 Program, Application Programming Language Compiler/Interpreter Software Operating System Instruction Set Architecture Microarchitecture Digital Logic Devices (transistors, etc.) Hardware Solid-State Physics A Simple Processor 2 Instruction Set Architecture (HW/SW Interface) processor memory Instructions • Names, Encodings Instruction Encoded • Effects Logic Instructions • Arguments, Results Registers Data Local storage • Names, Size • How many Large storage • Addresses, Locations Computer A Simple Processor 3 Computer Microarchitecture (Implementation of ISA) Instruction Fetch and Registers ALU Memory Decode A Simple Processor 4 (HW = Hardware or Hogwarts?) HW ISA An example made-up instruction set architecture Word size = 16 bits • Register size = 16 bits. • ALU computes on 16-bit values. Memory is byte-addressable, accesses full words (byte pairs). 16 registers: R0 - R15 • R0 always holds hardcoded 0 Address Contents • R1 always holds hardcoded 1 0 First instruction, low-order byte • R2 – R15: general purpose 1 First instruction, Instructions are 1 word in size. high-order byte 2 Second instruction, Separate instruction memory. low-order byte Program Counter (PC) register ... ... • holds address of next instruction to execute. A Simple Processor 5 R: Register File M: Data Memory Reg Contents Reg Contents Address Contents R0 0x0000 R8 0x0 – 0x1 R1 0x0001 R9 0x2 – 0x3 R2 R10 0x4 – 0x5 R3 R11 0x6 – 0x7 R4 R12 0x8 – 0x9 R5 R13 0xA – 0xB R6 R14 0xC – 0xD R7 R15 … Program Counter IM: Instruction Memory PC Address Contents 0x0 – 0x1 ß Processor 1.
    [Show full text]
  • Soft Machines Targets Ipcbottleneck
    SOFT MACHINES TARGETS IPC BOTTLENECK New CPU Approach Boosts Performance Using Virtual Cores By Linley Gwennap (October 27, 2014) ................................................................................................................... Coming out of stealth mode at last week’s Linley Pro- president/CTO Mohammad Abdallah. Investors include cessor Conference, Soft Machines disclosed a new CPU AMD, GlobalFoundries, and Samsung as well as govern- technology that greatly improves performance on single- ment investment funds from Abu Dhabi (Mubdala), Russia threaded applications. The new VISC technology can con- (Rusnano and RVC), and Saudi Arabia (KACST and vert a single software thread into multiple virtual threads, Taqnia). Its board of directors is chaired by Global Foun- which it can then divide across multiple physical cores. dries CEO Sanjay Jha and includes legendary entrepreneur This conversion happens inside the processor hardware Gordon Campbell. and is thus invisible to the application and the software Soft Machines hopes to license the VISC technology developer. Although this capability may seem impossible, to other CPU-design companies, which could add it to Soft Machines has demonstrated its performance advan- their existing CPU cores. Because its fundamental benefit tage using a test chip that implements a VISC design. is better IPC, VISC could aid a range of applications from Without VISC, the only practical way to improve single-thread performance is to increase the parallelism Application (sequential code) (instructions per cycle, or IPC) of the CPU microarchi- Single Thread tecture. Taken to the extreme, this approach results in massive designs such as Intel’s Haswell and IBM’s Power8 OS and Hypervisor that deliver industry-leading performance but waste power Standard ISA and die area.
    [Show full text]
  • Apparecchiature Medicali: Il Ruolo Delle Nanotecnologie
    EO Medical APPAreCCHIAture MeDICALI: IL ruoLo DeLLe NANoteCNoLoGIe IN queSto NuMero III Mercati/Attualità VIII Stanford, in fase di sviluppo una ‘pelle elettronica’ X Dialisi direttamente a casa XII Affrontare richieste ad alte prestazioni per la visualizzazione di immagini mediche XIV Criteri di scelta per alimentatori conformi a Iec60601-1 3a edizione XVII News Foto: Future Electronics Murata MEMS Solutions for Medical and Healthcare Enabling MEMS Sensing Improved Care Elements (Dies) SCG12S and SCG14S In medical and healthcare applications Vertical Accelerometer Elements (Dies) Murata’s medical MEMS sensors enable • Size 3mm x 2.12mm x 1.95 or 1.25mm • Various measuring ranges possible (1 - 12g) improved care and a better quality of life • Proven capacitive 3D-MEMS Technology for patients and elderly people. Medical sensors increase the intelligence of life supporting SCG10X and SCG10Z Horizontal Accelerometer Elements (Dies) transplants, and they can be used in new types of patient • Size SCG10X: 2.55mm x 2.95mm x 1.91mm monitoring applications that allow patients to lead more • Size SCG10Z: 1.50mm x 1.70mm x 1.83mm independent lives. Detecting signals triggered by symptoms • Various measuring ranges possible (1 - 12g) • Proven capacitive 3D-MEMS Technology helps optimize medication and prevent serious attacks of illness. Murata’s unique MEMS design, which combines single SCB10H crystal silicon and glass, ensures exceptional reliability, Pressure Sensor Elements (Dies) unprecedented accuracy and excellent stability over time. The • Size 1.4mm x 1.4mm x 0.85mm • High pressure shock survival (> 200 bar) power requirements of these medical sensors are extremely • Various pressure ranges possible (1.2 - 25 bar) low, which gives them a significant advantage in small • Proven capacitive 3D-MEMS technology battery-operated devices.
    [Show full text]
  • PERL – a Register-Less Processor
    PERL { A Register-Less Processor A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by P. Suresh to the Department of Computer Science & Engineering Indian Institute of Technology, Kanpur February, 2004 Certificate Certified that the work contained in the thesis entitled \PERL { A Register-Less Processor", by Mr.P. Suresh, has been carried out under my supervision and that this work has not been submitted elsewhere for a degree. (Dr. Rajat Moona) Professor, Department of Computer Science & Engineering, Indian Institute of Technology, Kanpur. February, 2004 ii Synopsis Computer architecture designs are influenced historically by three factors: market (users), software and hardware methods, and technology. Advances in fabrication technology are the most dominant factor among them. The performance of a proces- sor is defined by a judicious blend of processor architecture, efficient compiler tech- nology, and effective VLSI implementation. The choices for each of these strongly depend on the technology available for the others. Significant gains in the perfor- mance of processors are made due to the ever-improving fabrication technology that made it possible to incorporate architectural novelties such as pipelining, multiple instruction issue, on-chip caches, registers, branch prediction, etc. To supplement these architectural novelties, suitable compiler techniques extract performance by instruction scheduling, code and data placement and other optimizations. The performance of a computer system is directly related to the time it takes to execute programs, usually known as execution time. The expression for execution time (T), is expressed as a product of the number of instructions executed (N), the average number of machine cycles needed to execute one instruction (Cycles Per Instruction or CPI), and the clock cycle time (), as given in equation 1.
    [Show full text]
  • Computer Architecture Out-Of-Order Execution
    Computer Architecture Out-of-order Execution By Yoav Etsion With acknowledgement to Dan Tsafrir, Avi Mendelson, Lihu Rappoport, and Adi Yoaz 1 Computer Architecture 2013– Out-of-Order Execution The need for speed: Superscalar • Remember our goal: minimize CPU Time CPU Time = duration of clock cycle × CPI × IC • So far we have learned that in order to Minimize clock cycle ⇒ add more pipe stages Minimize CPI ⇒ utilize pipeline Minimize IC ⇒ change/improve the architecture • Why not make the pipeline deeper and deeper? Beyond some point, adding more pipe stages doesn’t help, because Control/data hazards increase, and become costlier • (Recall that in a pipelined CPU, CPI=1 only w/o hazards) • So what can we do next? Reduce the CPI by utilizing ILP (instruction level parallelism) We will need to duplicate HW for this purpose… 2 Computer Architecture 2013– Out-of-Order Execution A simple superscalar CPU • Duplicates the pipeline to accommodate ILP (IPC > 1) ILP=instruction-level parallelism • Note that duplicating HW in just one pipe stage doesn’t help e.g., when having 2 ALUs, the bottleneck moves to other stages IF ID EXE MEM WB • Conclusion: Getting IPC > 1 requires to fetch/decode/exe/retire >1 instruction per clock: IF ID EXE MEM WB 3 Computer Architecture 2013– Out-of-Order Execution Example: Pentium Processor • Pentium fetches & decodes 2 instructions per cycle • Before register file read, decide on pairing Can the two instructions be executed in parallel? (yes/no) u-pipe IF ID v-pipe • Pairing decision is based… On data
    [Show full text]